期刊文献+

C@Ag/TiO<sub>2</sub>: A Highly Efficient and Stable Photocatalyst Active under Visible Light 被引量:1

C@Ag/TiO<sub>2</sub>: A Highly Efficient and Stable Photocatalyst Active under Visible Light
下载PDF
导出
摘要 In this paper, preparation and characterization of C@Ag/TiO2 nanospheres compound photocatalysts was reported. C@Ag nanosphere was firstly synthesized via hydrothermal reaction, and followed by a sol-gel process to obtain the functionalized C@Ag/TiO2 nanosphere which has highly efficient visible light catalytic ability towards methyl orange (MO). The morphology of the obtained compound was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technologies. From which we can see that the as-prepared samples show a spherical structure with a diameter of approximately 200 nm, and the silver particle in core was about 10 nm. The catalytic ability of the synthesized photocatalysts under visible light irradiation shows that C@Ag/TiO2 possesses higher photocatalytic activity towards MO degradation than that of N-P25 (TiO2). Furthermore, the C@Ag/TiO2 photocatalysts exhibited excellent reusability with almost no change after five runs. Finally, the possible photocatalytic mechanism of catalyst under visible light was discussion and proposed. In this paper, preparation and characterization of C@Ag/TiO2 nanospheres compound photocatalysts was reported. C@Ag nanosphere was firstly synthesized via hydrothermal reaction, and followed by a sol-gel process to obtain the functionalized C@Ag/TiO2 nanosphere which has highly efficient visible light catalytic ability towards methyl orange (MO). The morphology of the obtained compound was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) technologies. From which we can see that the as-prepared samples show a spherical structure with a diameter of approximately 200 nm, and the silver particle in core was about 10 nm. The catalytic ability of the synthesized photocatalysts under visible light irradiation shows that C@Ag/TiO2 possesses higher photocatalytic activity towards MO degradation than that of N-P25 (TiO2). Furthermore, the C@Ag/TiO2 photocatalysts exhibited excellent reusability with almost no change after five runs. Finally, the possible photocatalytic mechanism of catalyst under visible light was discussion and proposed.
出处 《World Journal of Nano Science and Engineering》 2013年第1期1-5,共5页 纳米科学与工程(英文)
关键词 Nanoparticles Sol-Gel Preparation VISIBLE Light PHOTOCATALYST Surface Plasma Resonance Nanoparticles Sol-Gel Preparation Visible Light Photocatalyst Surface Plasma Resonance
  • 相关文献

同被引文献8

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部