摘要
This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.
This paper presents the quasi-ballistic electron transport of a symmetric double-gate (DG) nano-MOSFET with 10 nm gate length and implementation of logical NOT transistor circuit using this nano-MOSFET. Theoretical calculation and simulation using NanoMOS have been done to obtain parameters such as ballistic efficiency, backscattering mean free path, backscattering coefficient, critical length, thermal velocity, capacitances, resistance and drain current. NanoMOS is an on-line device simulator. Theoretical and simulated drain current per micro of width is closely matched. Transistor loaded NOT gate is simulated using WinSpice. Theoretical and simulated value of rise time, fall time, propagation delay and maximum signal frequency of logical NOT transistor level circuit is closely matched. Quasi-ballistic transport has been investigated in this paper since modern MOSFET devices operate between the drift-diffusion and ballistic regimes. This paper aims to enable modern semiconductor device engineers to become familiar with both approaches.
作者
Chek Yee Ooi
Soo King Lim
Chek Yee Ooi;Soo King Lim(Faculty of Information and Communication Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, Kampar, Perak, Malaysia;Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia)