期刊文献+

Glacier Area Change over Past 50 Years to Stable Phase in Drass Valley, Ladakh Himalaya (India) 被引量:1

Glacier Area Change over Past 50 Years to Stable Phase in Drass Valley, Ladakh Himalaya (India)
下载PDF
导出
摘要 Glaciers are dynamic reservoirs of constantly exchanging mass with parts of global hydrological system, process by which glaciers gain or lose snow and ice and establish a link between climate, glacier mass and glacier fluvial dynamics related directly to the behaviour of climate. Here, we report on glacier status over the past 50 years (1962-2013) on remotely-sensed volumetric changes of glaciers in Drass glacier basin, Ladakh Mountain, North-West Himalaya. Drass basin houses 150 glaciers of different dimensions predominantly (nearly 75%) by small sized glaciers. The glaciers monitored on multi-temporal satellite images of the year’s 2001, 2013 for short-term basis, and, Survey of India topographic sheets of 1965 (surveyed in 1963) on long-term basis. Machoi glacier has been selected for detailed study to assess health and fluctuation record on which observation has been made since the year 1875. The long-term monitoring (1965-2001) of 81 glaciers shows that 12.5% of glaciers have gained the area whereas 14% of large glaciers lost area 5% to 15%, and remaining 73% glaciers lost area marginally (<5%). The short-term monitoring shows that 80% glaciers do not show any change in area;even large glaciers vacated 0.64% - 2.6% area and small glaciers 1.68% - 9% glacier area. The trends in annual, seasonal and monthly maximum/minimum temperature and precipitation (snowfall and rainfall) of Drass for period 1987-2013 show that two different patterns of weather conditions: 1988-2001, cold moist winters with dry summers, and 2002-2013, a period of long winters and cool and moist summers, corroborate with transitional phase of glacier behaviour. This phenomenon has resulted in incorporating no change in area of 80% of glacier (120 glaciers) and remaining 20 percentage of glaciers show marginal loss in area. The positive balance mass for last four years (2011-2014) in benchmark Machoi glacier with cumulative specific balance +0.16 m w.e/km2/yr further indicates about the stability phase of the glaciers. Glaciers are dynamic reservoirs of constantly exchanging mass with parts of global hydrological system, process by which glaciers gain or lose snow and ice and establish a link between climate, glacier mass and glacier fluvial dynamics related directly to the behaviour of climate. Here, we report on glacier status over the past 50 years (1962-2013) on remotely-sensed volumetric changes of glaciers in Drass glacier basin, Ladakh Mountain, North-West Himalaya. Drass basin houses 150 glaciers of different dimensions predominantly (nearly 75%) by small sized glaciers. The glaciers monitored on multi-temporal satellite images of the year’s 2001, 2013 for short-term basis, and, Survey of India topographic sheets of 1965 (surveyed in 1963) on long-term basis. Machoi glacier has been selected for detailed study to assess health and fluctuation record on which observation has been made since the year 1875. The long-term monitoring (1965-2001) of 81 glaciers shows that 12.5% of glaciers have gained the area whereas 14% of large glaciers lost area 5% to 15%, and remaining 73% glaciers lost area marginally (<5%). The short-term monitoring shows that 80% glaciers do not show any change in area;even large glaciers vacated 0.64% - 2.6% area and small glaciers 1.68% - 9% glacier area. The trends in annual, seasonal and monthly maximum/minimum temperature and precipitation (snowfall and rainfall) of Drass for period 1987-2013 show that two different patterns of weather conditions: 1988-2001, cold moist winters with dry summers, and 2002-2013, a period of long winters and cool and moist summers, corroborate with transitional phase of glacier behaviour. This phenomenon has resulted in incorporating no change in area of 80% of glacier (120 glaciers) and remaining 20 percentage of glaciers show marginal loss in area. The positive balance mass for last four years (2011-2014) in benchmark Machoi glacier with cumulative specific balance +0.16 m w.e/km2/yr further indicates about the stability phase of the glaciers.
作者 M. N. Koul I. M. Bahuguna Ajai A. S. Rajawat Sadiq Ali Sumit Koul M. N. Koul;I. M. Bahuguna; ;Ajai;A. S. Rajawat;Sadiq Ali;Sumit Koul(Department of Geography, University of Jammu, Jammu, India;Space Application Centre, Ahmadabad, India;Department of Statistics, University of Jammu, Jammu, India)
出处 《American Journal of Climate Change》 2016年第1期88-102,共15页 美国气候变化期刊(英文)
关键词 Climate Change Stability of Himalayan Glaciers Remote Sensing GIS Glacier Mass Balance Benchmark Glacier Climate Change Stability of Himalayan Glaciers Remote Sensing GIS Glacier Mass Balance Benchmark Glacier
  • 相关文献

同被引文献39

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部