期刊文献+

Analysis of Extreme Precipitation Events over Central Plateau of Iran 被引量:1

Analysis of Extreme Precipitation Events over Central Plateau of Iran
下载PDF
导出
摘要 This paper describes the results of an analysis of extreme rainfall events in the central plateau of Iran. To study the extreme events, daily records of eighteen stations’ rainfalls in the region for different initial dates up to 2005 gathered from the bureau of meteorology. Then, the extreme rainfall threshold was calculated for each individual station using the statistical index of Gamble type I. Lastly, 22 mm was determined as the extreme rainfall value for the entire stations, and eventually 17 out of 169 extreme precipitation events were extracted in accordance with three factors including a) days with precipitation in not less than 50% of the stations, b) maximum rainfall is 22 mm or more in at least one of the stations, and c) mean precipitation of the basin is more than 3 mm. In the next step to analyze the synoptic features, the relevant meteorological data i.e. relative vorticity, geopotential height, sea level pressure, u and v wind components, relative humidity, vertical velocity, and precipitable water content at multiple levels of the atmosphere were examined from the NCEP/NCAR reanalysis dataset. The synoptic findings indicate that two patterns of deep trough and high ridge of the eastern Mediterranean were responsible for making the heavy precipitation events over the central plateau of Iran. The most and severest rainfall events occurred via deep tough pattern, which covered 76% of days with extreme precipitations during the examined period. Furthermore, the results suggest that the main moisture resources, which identified by HYSPLIT model’s outputs and moisture convergence/divergence zones for the rainy systems in the first pattern (deep trough) including Persian Gulf, Oman Sea, Indian Ocean, and Red Sea, while for the second pattern (high ridge) Persian Gulf and Red Sea play a significant role in feeding the storms in the central regions of Iran. Moreover, the southward movement of Polar Vortex is also considered as those important factors to produce extreme precipitation events over the central plateau of Iran. In general, the HYSPLIT trajectories model’s outputs confirmed the observed synoptic features in particular for the systems’ moisture feeding discussed in the patterns. This paper describes the results of an analysis of extreme rainfall events in the central plateau of Iran. To study the extreme events, daily records of eighteen stations’ rainfalls in the region for different initial dates up to 2005 gathered from the bureau of meteorology. Then, the extreme rainfall threshold was calculated for each individual station using the statistical index of Gamble type I. Lastly, 22 mm was determined as the extreme rainfall value for the entire stations, and eventually 17 out of 169 extreme precipitation events were extracted in accordance with three factors including a) days with precipitation in not less than 50% of the stations, b) maximum rainfall is 22 mm or more in at least one of the stations, and c) mean precipitation of the basin is more than 3 mm. In the next step to analyze the synoptic features, the relevant meteorological data i.e. relative vorticity, geopotential height, sea level pressure, u and v wind components, relative humidity, vertical velocity, and precipitable water content at multiple levels of the atmosphere were examined from the NCEP/NCAR reanalysis dataset. The synoptic findings indicate that two patterns of deep trough and high ridge of the eastern Mediterranean were responsible for making the heavy precipitation events over the central plateau of Iran. The most and severest rainfall events occurred via deep tough pattern, which covered 76% of days with extreme precipitations during the examined period. Furthermore, the results suggest that the main moisture resources, which identified by HYSPLIT model’s outputs and moisture convergence/divergence zones for the rainy systems in the first pattern (deep trough) including Persian Gulf, Oman Sea, Indian Ocean, and Red Sea, while for the second pattern (high ridge) Persian Gulf and Red Sea play a significant role in feeding the storms in the central regions of Iran. Moreover, the southward movement of Polar Vortex is also considered as those important factors to produce extreme precipitation events over the central plateau of Iran. In general, the HYSPLIT trajectories model’s outputs confirmed the observed synoptic features in particular for the systems’ moisture feeding discussed in the patterns.
作者 Iman Rousta Mohsen Soltani Wen Zhou Hoffman H. N. Cheung Iman Rousta;Mohsen Soltani;Wen Zhou;Hoffman H. N. Cheung(Department of Geography (Climatology), Yazd University, Yazd, Iran;Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Garmisch-Partenkirchen, Germany;Guy Carpenter Asia-Pacific Climate Impact Centre, School of Energy and Environment, City University of Hong Kong, Hong Kong, China)
出处 《American Journal of Climate Change》 2016年第3期297-313,共17页 美国气候变化期刊(英文)
关键词 Extreme Precipitation Occurrence Synoptic Analysis Trough and Ridge of Eastern Mediterranean HYSPLIT Trajectories Model Moisture Convergence Central Plateau Iran Extreme Precipitation Occurrence Synoptic Analysis Trough and Ridge of Eastern Mediterranean HYSPLIT Trajectories Model Moisture Convergence Central Plateau Iran
  • 相关文献

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部