期刊文献+

Analyses and Numerical Modeling of Gravity Waves Generated by Flow over Nanling Mountains

Analyses and Numerical Modeling of Gravity Waves Generated by Flow over Nanling Mountains
下载PDF
导出
摘要 Although there have been many observational and modeling studies of gravity waves excited by topograpghy, the detailed structure and its changes in real world are still poorly understood. The interaction of topography and background flow are described in details for a better understanding of the gravity waves observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery over Nanling Mountains. The evolutionary process and spatial structure of gravity waves were investigated by using almost all available observational data, including MODIS satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the aerosol backscattering signal data from Lidar, the surface observational data and the sounding data of Nanling mountain regions. In order to study its development mechanism, choosing the initial sounding of Jiangxi Gaizhou station located in the upstream of Nanling regions, and using the Advanced Regional Prediction System (ARPS), the numerical simulation was performed. It is shown that the ARPS model reproduced the main features of gravity waves reasonably well, where the gravity waves and turbulent mixed layer are consistent with the satellite image and the aerosol backscattering signal from Lidar observation. It is well-known that gravity wave-induced turbulence and thus turbulent mixing could affect the local composition of chemical species, which plays a significant role in the formation of low visibility and precipitation associated with local orography. Although there have been many observational and modeling studies of gravity waves excited by topograpghy, the detailed structure and its changes in real world are still poorly understood. The interaction of topography and background flow are described in details for a better understanding of the gravity waves observed by the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery over Nanling Mountains. The evolutionary process and spatial structure of gravity waves were investigated by using almost all available observational data, including MODIS satellite imagery, the Final Analyses (FNL) data issued by National Centers for Environmental Prediction (NCEP), the aerosol backscattering signal data from Lidar, the surface observational data and the sounding data of Nanling mountain regions. In order to study its development mechanism, choosing the initial sounding of Jiangxi Gaizhou station located in the upstream of Nanling regions, and using the Advanced Regional Prediction System (ARPS), the numerical simulation was performed. It is shown that the ARPS model reproduced the main features of gravity waves reasonably well, where the gravity waves and turbulent mixed layer are consistent with the satellite image and the aerosol backscattering signal from Lidar observation. It is well-known that gravity wave-induced turbulence and thus turbulent mixing could affect the local composition of chemical species, which plays a significant role in the formation of low visibility and precipitation associated with local orography.
出处 《Atmospheric and Climate Sciences》 2014年第2期317-322,共6页 大气和气候科学(英文)
关键词 GRAVITY WAVES MOUNTAINS BOUNDARY Layer Simulation Gravity Waves Mountains Boundary Layer Simulation
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部