摘要
Our Fair Plan to Safeguard Earth’s Climate reduces the emission of greenhouse gases to zero over the 80-year time period 2020 to 2100. To accomplish this, humanity must reduce its carbon intensity—the amount of CO<sub>2</sub> emitted per unit of energy—and its energy intensity—the amount of energy needed to generate a unit of Gross World Product. As shown in our Fair Plan 8 paper, reducing the future growth of the human population can also contribute to the reduction in greenhouse-gas emissions. Here, we explore this further. We project the historical decrease in Total Fertility Rate (TFR) across the 21<sup>st</sup> century toward its logistical asymptotic Reference value of 2.04 Births Per Woman (BPW). We then engineer the asymptotic TFR beginning in 2020 to 1.95, 1.85, 1.75, 1.65 & 1.55 BPW. We project the population across the 21<sup>st</sup> century for the Reference and engineered TFRs. We do so using the results of Basten, Lutz and Scherbov (2013) for the population evolution across the 21<sup>st</sup> century for 8 constant TFR values (=2.50, 2.25, 2.00, 1.75, 1.50, 1.25, 1.00 & 0.75 BPW). We find that purposefully engineering the asymptotic TFR can significantly contribute to achieving the reduction in greenhouse-gas emissions needed to transition to our Fair Plan to Safeguard Earth’s Climate.
Our Fair Plan to Safeguard Earth’s Climate reduces the emission of greenhouse gases to zero over the 80-year time period 2020 to 2100. To accomplish this, humanity must reduce its carbon intensity—the amount of CO<sub>2</sub> emitted per unit of energy—and its energy intensity—the amount of energy needed to generate a unit of Gross World Product. As shown in our Fair Plan 8 paper, reducing the future growth of the human population can also contribute to the reduction in greenhouse-gas emissions. Here, we explore this further. We project the historical decrease in Total Fertility Rate (TFR) across the 21<sup>st</sup> century toward its logistical asymptotic Reference value of 2.04 Births Per Woman (BPW). We then engineer the asymptotic TFR beginning in 2020 to 1.95, 1.85, 1.75, 1.65 & 1.55 BPW. We project the population across the 21<sup>st</sup> century for the Reference and engineered TFRs. We do so using the results of Basten, Lutz and Scherbov (2013) for the population evolution across the 21<sup>st</sup> century for 8 constant TFR values (=2.50, 2.25, 2.00, 1.75, 1.50, 1.25, 1.00 & 0.75 BPW). We find that purposefully engineering the asymptotic TFR can significantly contribute to achieving the reduction in greenhouse-gas emissions needed to transition to our Fair Plan to Safeguard Earth’s Climate.
作者
Michael E. Schlesinger
Michael E. Schlesinger(Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA)