期刊文献+

Defining a Standard Methodology to Obtain Optimum WRF Configuration for Operational Forecast: Application over the Port of Huelva (Southern Spain) 被引量:1

Defining a Standard Methodology to Obtain Optimum WRF Configuration for Operational Forecast: Application over the Port of Huelva (Southern Spain)
下载PDF
导出
摘要 In this contribution, we calibrate the meteorological model weather and research forecasting (WRF) for operational forecasting in the Port of Huelva managed by the Authority Port of Huelva. Meteorological forecasting will allow reducing the impact of the meteorological phenomena over weather sensitive activities in the region. Concretely, the meteorological modeling developed will be used to analyze meteorological hazard impacts and to improve the management of the local air quality. To achieve these goals, numerous sensitive analyses corresponding to different model options have been developed. These analyses consider different physical and dynamical options, the coupling of very high resolution physiographic database (topography and land uses), and data assimilation. Comparing experiments, results with observational measures provide us by the Spanish National Meteorology Agency (AEMET). During a representative period, the optimum WRF configuration for the region is obtained. Calibration has been focused on wind due to this is the main risk factor in the region. When the model is satisfactorily calibrated, WRF is evaluated using whole modeling years 2012 and 2013, working with very high horizontal resolution, up to 0.333 km of horizontal grid resolution. Results obtained from the evaluation indicate that the numerical weather prediction system developed has a confidence level of 70% for the temperature, 81% and 66% for the wind speed and wind direction respectively, and 90% for the relative humidity. Methodology designed defines the quality control assurance of high-accuracy forecasting services of Meteosim S.L. In this contribution, we calibrate the meteorological model weather and research forecasting (WRF) for operational forecasting in the Port of Huelva managed by the Authority Port of Huelva. Meteorological forecasting will allow reducing the impact of the meteorological phenomena over weather sensitive activities in the region. Concretely, the meteorological modeling developed will be used to analyze meteorological hazard impacts and to improve the management of the local air quality. To achieve these goals, numerous sensitive analyses corresponding to different model options have been developed. These analyses consider different physical and dynamical options, the coupling of very high resolution physiographic database (topography and land uses), and data assimilation. Comparing experiments, results with observational measures provide us by the Spanish National Meteorology Agency (AEMET). During a representative period, the optimum WRF configuration for the region is obtained. Calibration has been focused on wind due to this is the main risk factor in the region. When the model is satisfactorily calibrated, WRF is evaluated using whole modeling years 2012 and 2013, working with very high horizontal resolution, up to 0.333 km of horizontal grid resolution. Results obtained from the evaluation indicate that the numerical weather prediction system developed has a confidence level of 70% for the temperature, 81% and 66% for the wind speed and wind direction respectively, and 90% for the relative humidity. Methodology designed defines the quality control assurance of high-accuracy forecasting services of Meteosim S.L.
作者 Raúl Arasa Ignasi Porras Anna Domingo-Dalmau Miquel Picanyol Bernat Codina Mª Ángeles González Jésica Piñón Raúl Arasa;Ignasi Porras;Anna Domingo-Dalmau;Miquel Picanyol;Bernat Codina;Mª Ángeles González;Jésica Piñón(Technical Department, Meteosim S.L., Barcelona, Spain;Department of Astronomy and Meteorology, University of Barcelona, Barcelona, Spain)
出处 《Atmospheric and Climate Sciences》 2016年第2期329-350,共22页 大气和气候科学(英文)
关键词 WRF Sensitive Analysis Meteorological Modelling Physical Options LES High Resolution WRF Sensitive Analysis Meteorological Modelling Physical Options LES High Resolution
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部