期刊文献+

An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse Gas Emissions

An Analysis of the Spectral Energetics for a Planet Experiencing Rapid Greenhouse Gas Emissions
下载PDF
导出
摘要 So far, energetics studies related to climate change have focused on the disturbed and undisturbed kinetic and potential energies, as well as their transformations, without dealing with the energetics involved in the phenomena of different spatial scales. Thus, the present work reports the first analysis of the spectral energetics for a condition of climate change, followed by the high-range emission scenario, RCP8.5, which originated from the new Max Planck Institute Earth System Model (MPI-ESM). The results showed that both types of generation (Go and Gn), baroclinic processes (Co and Cn), kinetic energies (Ko and Kn) and the barotropic process, Mn, significantly increase in the condition of a warming climate. Moreover, the results still reveal that in the most components of the energetics, is the planetary scale waves that are the most impacted under a climate change scenario. These results highlight that global warming can have different impacts on particular types of motions. So far, energetics studies related to climate change have focused on the disturbed and undisturbed kinetic and potential energies, as well as their transformations, without dealing with the energetics involved in the phenomena of different spatial scales. Thus, the present work reports the first analysis of the spectral energetics for a condition of climate change, followed by the high-range emission scenario, RCP8.5, which originated from the new Max Planck Institute Earth System Model (MPI-ESM). The results showed that both types of generation (Go and Gn), baroclinic processes (Co and Cn), kinetic energies (Ko and Kn) and the barotropic process, Mn, significantly increase in the condition of a warming climate. Moreover, the results still reveal that in the most components of the energetics, is the planetary scale waves that are the most impacted under a climate change scenario. These results highlight that global warming can have different impacts on particular types of motions.
出处 《Atmospheric and Climate Sciences》 2017年第1期117-126,共10页 大气和气候科学(英文)
关键词 ENERGETICS Global ENERGETICS SPECTRAL ENERGETICS Climate Change MPI-ESM Model Energetics Global Energetics Spectral Energetics Climate Change MPI-ESM Model
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部