摘要
This study compared data from the MODerate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Terra satellite and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on EUMETSAT’s Meterosat Second Generation (MSG) satellite with in situ data obtained from ground observation stations in Congo-Brazzaville. Remote sensing instruments can be used to estimate air temperature, which has an important role in monitoring the effects of climate change. Congo-Brazzaville is located in equatorial forest, which is difficult to access, and has a limited number of ground meteorological stations measuring air temperature. This study used MODIS and MSG data for the period 2009-2014 to assess the performance of land surface temperature data from satellites against in situ data from ground-based stations in Congo-Brazzaville using a linear regression model. This work has allowed us to determine which satellite is best adapted for use in Central Africa.
This study compared data from the MODerate-resolution Imaging Spectroradiometer (MODIS) onboard NASA’s Terra satellite and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on EUMETSAT’s Meterosat Second Generation (MSG) satellite with in situ data obtained from ground observation stations in Congo-Brazzaville. Remote sensing instruments can be used to estimate air temperature, which has an important role in monitoring the effects of climate change. Congo-Brazzaville is located in equatorial forest, which is difficult to access, and has a limited number of ground meteorological stations measuring air temperature. This study used MODIS and MSG data for the period 2009-2014 to assess the performance of land surface temperature data from satellites against in situ data from ground-based stations in Congo-Brazzaville using a linear regression model. This work has allowed us to determine which satellite is best adapted for use in Central Africa.