期刊文献+

Reverse-Osmosis Desalination of Water Powered by Photo-Voltaic Modules

Reverse-Osmosis Desalination of Water Powered by Photo-Voltaic Modules
下载PDF
导出
摘要 The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish. The rising of the world’s population leads automatically to the rising of water demand. As a consequence the lack of drinking water increases. Currently, approximately 1.2 billion people globally (one-sixth of the world’s population) do not have access to adequate clean water. Since a large part of the world’s population is concentrated in coastal areas, the desalination of seawater seems to be a promising solution, especially in our Arab world. An innovative stand-alone solar desalination system could be used to produce drinking water from seawater or any brackish water sources. The great advantage of such a system is that it combines efficient desalination technology, reverse osmosis, with a renewable energy source;the main goal is improving the technical feasibility of such systems. There are many advantages of this coupling with RE resources;first of all we separate the drinking water from the electricity grid and its faults, save the burning fossil fuel and its emissions and can provide fresh water to remote communities that do not have sufficient traditional energy sources;but as we see in the thesis we don’t have economic benefit;because these projects depend on the electricity cost in each country and its location and its solar specifications. We design and implement a small laboratorial model for PV-RO (Photo-Voltaic Powered Reverse Osmosis) to recognize the its performance for seawater and brackish water;many of the problems are interrupted such as embargo on Syria;so we see this project has to be done according to affordable local potentialities, but we crave to keep the principle of operation, so we make it for the tap water which close to brackish.
机构地区 Energy Engineer
出处 《Computational Water, Energy, and Environmental Engineering》 2014年第1期22-29,共8页 水能与环境工程(英文)
关键词 Photo-Voltaic DESALINATION REVERSE Osmosis Photo-Voltaic Desalination Reverse Osmosis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部