期刊文献+

Investigation of the Relationship among Water and Crop Production under Bounded Irrigation Conditions

Investigation of the Relationship among Water and Crop Production under Bounded Irrigation Conditions
下载PDF
导出
摘要 Water scarcity is relative and variable concept that can occur at any level of supply and demand. It is also a social construct, which is linked to the intervention in the water cycle and changes over time as a result of natural hydrological change. It is more severe when water acts as a backbone in economic policies, planning and management methods. Water scarcity can be expected to increase with most forms of economic development, but, if properly identified, many of its causes can be expected and avoided or mitigated. However, the limited irrigation management is considered a very important issue in the agricultural scope. Therefore, in this study</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the relationship between water, crop production, photosynthesis, crop transpiration, crop growth, crop yields and water use efficiency have been discussed under limited irrigation conditions. However, the crops have some ability to adapt and resist against limited irrigation. Hence, under high temperate conditions, this is a shortage of water and photosynthesis is decreased with a pore (stoma) restraining. At the same time</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the evapotranspiration reaches to the utmost value and the water use efficiency rises because of optimal monitoring of leaf pore (stoma). Therefore, the modality which is the reduction of the risks and improving industrial control in incomplete irrigation are the chief constraints of providing irrigation water in the future, which leads to increased crop production and ultimately providing a provision of food security. Water scarcity is relative and variable concept that can occur at any level of supply and demand. It is also a social construct, which is linked to the intervention in the water cycle and changes over time as a result of natural hydrological change. It is more severe when water acts as a backbone in economic policies, planning and management methods. Water scarcity can be expected to increase with most forms of economic development, but, if properly identified, many of its causes can be expected and avoided or mitigated. However, the limited irrigation management is considered a very important issue in the agricultural scope. Therefore, in this study</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the relationship between water, crop production, photosynthesis, crop transpiration, crop growth, crop yields and water use efficiency have been discussed under limited irrigation conditions. However, the crops have some ability to adapt and resist against limited irrigation. Hence, under high temperate conditions, this is a shortage of water and photosynthesis is decreased with a pore (stoma) restraining. At the same time</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the evapotranspiration reaches to the utmost value and the water use efficiency rises because of optimal monitoring of leaf pore (stoma). Therefore, the modality which is the reduction of the risks and improving industrial control in incomplete irrigation are the chief constraints of providing irrigation water in the future, which leads to increased crop production and ultimately providing a provision of food security.
作者 Tawheed Mohammed Elheesin Shareef Zhongming Ma Juan Chen Xiaoxia Niu Tawheed Mohammed Elheesin Shareef;Zhongming Ma;Juan Chen;Xiaoxia Niu(Gansu Academy of Agricultural Sciences, Lanzhou, China;Department of Agriculture Engineering, Faculty of Agriculture, University of Khartoum, Khartoum, Sudan;Institute of Economic Crops and Beer Materials, Gansu Academy of Agricultural Sciences, Lanzhou, China)
出处 《Computational Water, Energy, and Environmental Engineering》 2021年第1期18-35,共18页 水能与环境工程(英文)
关键词 Freshwater Consumption Insufficient Irrigation Water Use Efficiency Yield Formation Freshwater Consumption Insufficient Irrigation Water Use Efficiency Yield Formation
  • 相关文献

参考文献3

二级参考文献28

共引文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部