摘要
Exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) may increase risk of lung cancer. The repetitive and broad-area coverage of satellites may allow atmospheric remote sensing to offer a unique opportunity to monitor air quality and help fill air pollution data gaps that hinder efforts to study air pollution and protect public health. This geographical study explores if there is an association between PM2.5 and lung cancer mortality rate in the conterminous USA. Lung cancer (ICD-10 codes C34- C34) death count and population at risk by county were extracted for the period from 2001 to 2010 from the U.S. CDC WONDER online database. The 2001-2010 Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth dataset was used to calculate a 10 year average PM2.5 pollution. Exploratory spatial data analyses, spatial regression (a spatial lag and a spatial error model), and spatially extended Bayesian Monte Carlo Markov Chain simulation found that there is a significant positive association between lung cancer mortality rate and PM2.5. The association would justify the need of further toxicological investigation of the biological mechanism of the adverse effect of the PM2.5 pollution on lung cancer. The Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth dataset provides a continuous surface of concentrations of PM2.5 and is a useful data source for environmental health research.
Exposure to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) may increase risk of lung cancer. The repetitive and broad-area coverage of satellites may allow atmospheric remote sensing to offer a unique opportunity to monitor air quality and help fill air pollution data gaps that hinder efforts to study air pollution and protect public health. This geographical study explores if there is an association between PM2.5 and lung cancer mortality rate in the conterminous USA. Lung cancer (ICD-10 codes C34- C34) death count and population at risk by county were extracted for the period from 2001 to 2010 from the U.S. CDC WONDER online database. The 2001-2010 Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth dataset was used to calculate a 10 year average PM2.5 pollution. Exploratory spatial data analyses, spatial regression (a spatial lag and a spatial error model), and spatially extended Bayesian Monte Carlo Markov Chain simulation found that there is a significant positive association between lung cancer mortality rate and PM2.5. The association would justify the need of further toxicological investigation of the biological mechanism of the adverse effect of the PM2.5 pollution on lung cancer. The Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth dataset provides a continuous surface of concentrations of PM2.5 and is a useful data source for environmental health research.