摘要
Natural and anthropogenic factors are responsible for changes in wetland function and structure. This research deals with the complexity of interactions among flood attributes, climatic data and land use trajectories to track the impact of land use changes for wetland management, over 30 years (1984- 2014). This paper presents a multi-temporal analysis of a floodplain to know the inter-annual ecohydrological variability, including extraordinary events of floods and droughts, using indicators of hydrological regime. It also presents a quantitative description of the geospatial variability in the Mogi Guaçu wetland components to assess the changes in the conversion, replacement, of wetland landscapes by anthropic growth activities. Flood attributes and anthropogenic pressures have altered temporal habitat variability in changes on the river course, in sandbars extent, and oxbow lake genesis and extinction, with a decline in the biota dependent on these habitats. These results have significant implications of the quick expansion of anthropogenic activities and provide key information about the impact of land use changes on the wetland function and structure. It is an objective tool to help the environmental management of wetland areas.
Natural and anthropogenic factors are responsible for changes in wetland function and structure. This research deals with the complexity of interactions among flood attributes, climatic data and land use trajectories to track the impact of land use changes for wetland management, over 30 years (1984- 2014). This paper presents a multi-temporal analysis of a floodplain to know the inter-annual ecohydrological variability, including extraordinary events of floods and droughts, using indicators of hydrological regime. It also presents a quantitative description of the geospatial variability in the Mogi Guaçu wetland components to assess the changes in the conversion, replacement, of wetland landscapes by anthropic growth activities. Flood attributes and anthropogenic pressures have altered temporal habitat variability in changes on the river course, in sandbars extent, and oxbow lake genesis and extinction, with a decline in the biota dependent on these habitats. These results have significant implications of the quick expansion of anthropogenic activities and provide key information about the impact of land use changes on the wetland function and structure. It is an objective tool to help the environmental management of wetland areas.