期刊文献+

Cost Optimisation for Minimizing the Visual Impact of Ornamental Stone Quarrying. A Case Study in Murcia Region

Cost Optimisation for Minimizing the Visual Impact of Ornamental Stone Quarrying. A Case Study in Murcia Region
下载PDF
导出
摘要 Quarrying of ornamental stone has adverse effects that are both visual and environmental. This paper aims to develop a methodology for minimising the costs associated with reducing the visual impact of ornamental stone quarrying. This study uses digital topographical maps of the study zone and a GPS and GIS application to calculate the extent of the area affected by quarrying activities for each altitude designated in the work plan and to calculate the extent of the potential visual impact. The results obtained applying the proposed methodology for the selected area suggested that the potential visual impact is minimal for an altitude of 520 metres, this being the optimal point for the observer. When altitude increases, the potential visual impact increases and the optimal point for the observer diminishes until the highest impact altitude (740 m) is readied. The optimal point that the exploitation should reach is that at which the values of the diagram generated by the (%) area of potential visual impact and area of exploitation (%) intersect. The methodology allows the optimal altitude to be determined for mining exploitations and helps assess the viability of a given exploitation from an environmental point of view. Quarrying of ornamental stone has adverse effects that are both visual and environmental. This paper aims to develop a methodology for minimising the costs associated with reducing the visual impact of ornamental stone quarrying. This study uses digital topographical maps of the study zone and a GPS and GIS application to calculate the extent of the area affected by quarrying activities for each altitude designated in the work plan and to calculate the extent of the potential visual impact. The results obtained applying the proposed methodology for the selected area suggested that the potential visual impact is minimal for an altitude of 520 metres, this being the optimal point for the observer. When altitude increases, the potential visual impact increases and the optimal point for the observer diminishes until the highest impact altitude (740 m) is readied. The optimal point that the exploitation should reach is that at which the values of the diagram generated by the (%) area of potential visual impact and area of exploitation (%) intersect. The methodology allows the optimal altitude to be determined for mining exploitations and helps assess the viability of a given exploitation from an environmental point of view.
出处 《Journal of Geoscience and Environment Protection》 2018年第2期74-88,共15页 地球科学和环境保护期刊(英文)
关键词 RESTORATION COSTS ORNAMENTAL STONE Visual Impact LIMESTONE Quarrying Restoration Costs Ornamental Stone Visual Impact Limestone Quarrying
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部