摘要
By using the NCEP/GFS analysis data, CIMISS data, JMA and China’s Typhoon Networks, heavy rainstorm occurred in east of North China associated with Typhoon Damrey from August 3rd to 4th, 2012 was analyzed. Results show during Damrey was going nearby Tianjin City and Hebei province of China, heavy rainstorm was observed in the cities of Qinhuangdao and Tangshan. The southerly jet stream from the southern side of the subtropical high and the periphery of Typhoon Saola is the conveyor belt for water vapor and energy, which enables Damrey to maintain for a long time and provide water vapor and heat conditions for rainfall in east of North China. The structure of Damrey caused a strong updraft in east of North China with a K-index greater than 35°C, which provided a favorable condition for the heavy rainstorm. The typhoon rainstorms in North China are the result of the interaction of the westerly, subtropical and tropical systems. In this heavy rain period, there was an obvious interaction between subtropical and tropical systems. This study has investigated the interaction between the northwestern Pacific typhoon and the North China heavy rainstorm, including the circulation characteristics of the typhoon and North China before and after the regional heavy rainstorm. Additionally, the climate background provides a reliable basis for the heavy rain forecast.
By using the NCEP/GFS analysis data, CIMISS data, JMA and China’s Typhoon Networks, heavy rainstorm occurred in east of North China associated with Typhoon Damrey from August 3rd to 4th, 2012 was analyzed. Results show during Damrey was going nearby Tianjin City and Hebei province of China, heavy rainstorm was observed in the cities of Qinhuangdao and Tangshan. The southerly jet stream from the southern side of the subtropical high and the periphery of Typhoon Saola is the conveyor belt for water vapor and energy, which enables Damrey to maintain for a long time and provide water vapor and heat conditions for rainfall in east of North China. The structure of Damrey caused a strong updraft in east of North China with a K-index greater than 35°C, which provided a favorable condition for the heavy rainstorm. The typhoon rainstorms in North China are the result of the interaction of the westerly, subtropical and tropical systems. In this heavy rain period, there was an obvious interaction between subtropical and tropical systems. This study has investigated the interaction between the northwestern Pacific typhoon and the North China heavy rainstorm, including the circulation characteristics of the typhoon and North China before and after the regional heavy rainstorm. Additionally, the climate background provides a reliable basis for the heavy rain forecast.