期刊文献+

Investigation of Biobutanol Efficiency of Chlorella sp. Cultivated in Municipal Wastewater

Investigation of Biobutanol Efficiency of Chlorella sp. Cultivated in Municipal Wastewater
下载PDF
导出
摘要 Many strains of microalgae can grow in wastewaters through their ability to utilize inorganic nitrogen and phosphorus in wastewater. The content of municipal wastewater changes from a location to others. Biofuel production from municipal wastewater has gained huge importance due to progresses in cultivation of microalgae in wastewaters. Biobutanol is produced by the acetone-butanol-ethanol (ABE) fermentation. In this study, we examined the biobutanol production efficiency of Chlorella sp. DEE006 which is cultivated in the municipal wastewater in flat-photobioreactor. Growth of microalgae was monitored at 680 nm using spectrophotometer and the biomass was also pre-treated with acidic hydrolysis (1 M H2SO4). Total carbohydrate and protein contents were measured. Fermented microalgae samples were taken for calculation of biobutanol concentration. We obtained both high biobutanol content (6.23 ± 0.19 g·L−1) and high bioethanol yield 0.16 ± 0.005 g (g sugar)−1. 50% wastewater had the highest biomass concentration (1930 ± 11 mg/L) among the wastewaters with five various concentrations. It had the highest biomass productivity with 0.28 ± 0.001 g L−1d−1. Also, it obtained the highest carbohydrate and protein concentration with 0.80 ± 0.02 gL−1 and 0.95 ± 0.01 gL−1, respectively. According to our results, Chlorella sp. DEE006 can be used for large scale biobutanol production in the future. Many strains of microalgae can grow in wastewaters through their ability to utilize inorganic nitrogen and phosphorus in wastewater. The content of municipal wastewater changes from a location to others. Biofuel production from municipal wastewater has gained huge importance due to progresses in cultivation of microalgae in wastewaters. Biobutanol is produced by the acetone-butanol-ethanol (ABE) fermentation. In this study, we examined the biobutanol production efficiency of Chlorella sp. DEE006 which is cultivated in the municipal wastewater in flat-photobioreactor. Growth of microalgae was monitored at 680 nm using spectrophotometer and the biomass was also pre-treated with acidic hydrolysis (1 M H2SO4). Total carbohydrate and protein contents were measured. Fermented microalgae samples were taken for calculation of biobutanol concentration. We obtained both high biobutanol content (6.23 ± 0.19 g·L−1) and high bioethanol yield 0.16 ± 0.005 g (g sugar)−1. 50% wastewater had the highest biomass concentration (1930 ± 11 mg/L) among the wastewaters with five various concentrations. It had the highest biomass productivity with 0.28 ± 0.001 g L−1d−1. Also, it obtained the highest carbohydrate and protein concentration with 0.80 ± 0.02 gL−1 and 0.95 ± 0.01 gL−1, respectively. According to our results, Chlorella sp. DEE006 can be used for large scale biobutanol production in the future.
作者 Melih Onay
出处 《Journal of Geoscience and Environment Protection》 2018年第10期40-50,共11页 地球科学和环境保护期刊(英文)
关键词 MICROALGAE CHLORELLA BIOBUTANOL BIOFUEL MUNICIPAL Wastewater Microalgae Chlorella Biobutanol Biofuel Municipal Wastewater
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部