期刊文献+

Vulnerability Analysis of Land Instability Using Multi-Criteria Evaluation for Urban Sustainability: Methodological Overview and Case Study Assessment

Vulnerability Analysis of Land Instability Using Multi-Criteria Evaluation for Urban Sustainability: Methodological Overview and Case Study Assessment
下载PDF
导出
摘要 There were many developed urban areas have been established without well studied from the hazards perspective. However, Mokattam Plateau is one of the most vulnerable areas of frequent landslides and rock-falls disasters (Moustafa et al., 1991). So, an integrated analysis method is highly needed. Spatial analysis of Multi-criteria evaluation (MCE) provided an assessment of the hazards’ factors (i.e. faults, joints, lithology, slope, old wadies/surface drainage, and quarries) at Mokattam area. The data have been analyzed by the MCE, Analytical Hierarchy Process (AHP)/Ordered Weighted Average (OWA)/Weighted Linear Combination (WLC). The research found that the geological factors (faults, joints, and lithology) were the highest contributors by about 65% of the hazardous driving forces, while the geomorphological processes (slope and old wadies/surface drainage) were contributed by about 30%. In addition, the impact of the human activities such as random urbanization, excess use of irrigation water and the transportation are critical hidden drivers that affect the land instability and accelerates the landslides and rock-falls (Amasha, 2009). Therefore, the decision makers and urban planners have to consider the four scenarios of low risk-high tradeoff (MIDAND), and high risk-some tradeoff (MIDOR) in their disaster risk management plans. While the risk-taking (OR) option is highly recommended for the new urban development projects to ensure the sustainability and risk resilience. While the risk-averse (AND) scenario is not recommended. There were many developed urban areas have been established without well studied from the hazards perspective. However, Mokattam Plateau is one of the most vulnerable areas of frequent landslides and rock-falls disasters (Moustafa et al., 1991). So, an integrated analysis method is highly needed. Spatial analysis of Multi-criteria evaluation (MCE) provided an assessment of the hazards’ factors (i.e. faults, joints, lithology, slope, old wadies/surface drainage, and quarries) at Mokattam area. The data have been analyzed by the MCE, Analytical Hierarchy Process (AHP)/Ordered Weighted Average (OWA)/Weighted Linear Combination (WLC). The research found that the geological factors (faults, joints, and lithology) were the highest contributors by about 65% of the hazardous driving forces, while the geomorphological processes (slope and old wadies/surface drainage) were contributed by about 30%. In addition, the impact of the human activities such as random urbanization, excess use of irrigation water and the transportation are critical hidden drivers that affect the land instability and accelerates the landslides and rock-falls (Amasha, 2009). Therefore, the decision makers and urban planners have to consider the four scenarios of low risk-high tradeoff (MIDAND), and high risk-some tradeoff (MIDOR) in their disaster risk management plans. While the risk-taking (OR) option is highly recommended for the new urban development projects to ensure the sustainability and risk resilience. While the risk-averse (AND) scenario is not recommended.
作者 Ali Amasha
机构地区 Remote Sensing
出处 《Journal of Geoscience and Environment Protection》 2018年第11期124-138,共15页 地球科学和环境保护期刊(英文)
关键词 Hazards ASSESSMENT Driving Forces LAND INSTABILITY MCE-AHP-OWA RESILIENCE Spatial Analysis Hazards Assessment Driving Forces Land Instability MCE-AHP-OWA Resilience Spatial Analysis
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部