期刊文献+

Exploring Heat Sources Using Gravimetric Data: A Case Study of Magadi Geothermal Prospect, Kenya

Exploring Heat Sources Using Gravimetric Data: A Case Study of Magadi Geothermal Prospect, Kenya
下载PDF
导出
摘要 Understanding the location of the subsurface heat sources is crucial for efficient geothermal resource exploration and exploitation. This study aimed to investigate the faults and the depth to heat sources for a geothermal system in Magadi, southern Rift Valley, through the integration of gravity mapping, 3D Euler deconvolution, and spectral analysis. Gravity mapping is a powerful geophysical method widely used to infer subsurface density variations, which are indicative of geological structures and volcanic intrusions that can be potential heat sources. The Volcano-Tectonic and Fluvial-Deltaic Sedimentation process of the Kenyan rift which encompasses the Magadi basin are responsible for geomorphic and geologic processes in the area. Alkali lava sheets of Magadi plateau trachytes covered with lacustrine sediments characterize 80% of the area. Deeper is the Tanzanian craton basement, overlain by Pliocene to Miocene volcanic and sedimentary rocks. A gravity survey with a data density of 2.375 stations/km<sup>2</sup> produced high-resolution anomaly and total horizontal derivative maps showing gravity highs between −180 mGals to −174 mGals along the eastern zone of the study area. A buried major fault trending N-S was delineated in the mid-upper region of the area by Euler solutions at an average depth of 350 meters. Deeper features associated with possible volcanic dykes and sills gave Euler depth ranges of 0.7 km to 2.2 km. Radial average spectral analysis showed depth to the top of shallow and deep features at 2.4694 km and 5.827 km respectively. The correlation between gravity anomalies, geological structures, and present hot springs supports the hypothesis that volcanic processes have played a significant role in the development of the geothermal system in the study area. Understanding the location of the subsurface heat sources is crucial for efficient geothermal resource exploration and exploitation. This study aimed to investigate the faults and the depth to heat sources for a geothermal system in Magadi, southern Rift Valley, through the integration of gravity mapping, 3D Euler deconvolution, and spectral analysis. Gravity mapping is a powerful geophysical method widely used to infer subsurface density variations, which are indicative of geological structures and volcanic intrusions that can be potential heat sources. The Volcano-Tectonic and Fluvial-Deltaic Sedimentation process of the Kenyan rift which encompasses the Magadi basin are responsible for geomorphic and geologic processes in the area. Alkali lava sheets of Magadi plateau trachytes covered with lacustrine sediments characterize 80% of the area. Deeper is the Tanzanian craton basement, overlain by Pliocene to Miocene volcanic and sedimentary rocks. A gravity survey with a data density of 2.375 stations/km<sup>2</sup> produced high-resolution anomaly and total horizontal derivative maps showing gravity highs between −180 mGals to −174 mGals along the eastern zone of the study area. A buried major fault trending N-S was delineated in the mid-upper region of the area by Euler solutions at an average depth of 350 meters. Deeper features associated with possible volcanic dykes and sills gave Euler depth ranges of 0.7 km to 2.2 km. Radial average spectral analysis showed depth to the top of shallow and deep features at 2.4694 km and 5.827 km respectively. The correlation between gravity anomalies, geological structures, and present hot springs supports the hypothesis that volcanic processes have played a significant role in the development of the geothermal system in the study area.
作者 Evance Odero John Githiri Maurice K’Orowe Evance Odero;John Githiri;Maurice K’Orowe(Department of Physics, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya)
机构地区 Department of Physics
出处 《Journal of Geoscience and Environment Protection》 2024年第5期147-161,共15页 地球科学和环境保护期刊(英文)
关键词 Gravity Mapping 3D Euler Spectral Analysis GEOTHERMAL Magadi Gravity Mapping 3D Euler Spectral Analysis Geothermal Magadi
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部