摘要
The Salton Trough of southwestern California is inferred to be an incipient ocean basin, and is a polyphase basin with significant extension in addition to dextral shear. To further explore the origin and evolution of this basin, we have incorporated receiver function, gravity, and aeromagnetic data to construct new subsurface crustal scale models. Receiver function analysis suggests the Moho is 20 km deep to the southwest of the Salton Sea and deepens to 32 km in the region east of the Salton Trough and dome in shape. Crustal modeling shows that the density of the lower crust is 2950 kg/m3, which is an indication for gabbroic com- position, while the density of the upper crust varies from 2500 kg/m3 to 2600 kg/m3 and the depth of sedi- mentary and meta-sedimentary rocks appears to be 8 - 10 km. Most magnetic anomalies show shallow relief and are low amplitude with some exceptions in the marginal areas, suggesting the absence of shallow buried mafic intrusions and deep basement. Our models show a magmatic body to the southwest of the Salton Sea at depth of about 18 km and extend in SW-NE direction for about 90 km, We expect this magmatic body (mix- ture of lower crust and upper mantle material) is responsible for crustal thinning, stretching and rifting, ac- cording to the crustal models this body doesn’t exist in the north region of Salton Trough, thus, no further propagate of the rift is expected in the north.
The Salton Trough of southwestern California is inferred to be an incipient ocean basin, and is a polyphase basin with significant extension in addition to dextral shear. To further explore the origin and evolution of this basin, we have incorporated receiver function, gravity, and aeromagnetic data to construct new subsurface crustal scale models. Receiver function analysis suggests the Moho is 20 km deep to the southwest of the Salton Sea and deepens to 32 km in the region east of the Salton Trough and dome in shape. Crustal modeling shows that the density of the lower crust is 2950 kg/m3, which is an indication for gabbroic com- position, while the density of the upper crust varies from 2500 kg/m3 to 2600 kg/m3 and the depth of sedi- mentary and meta-sedimentary rocks appears to be 8 - 10 km. Most magnetic anomalies show shallow relief and are low amplitude with some exceptions in the marginal areas, suggesting the absence of shallow buried mafic intrusions and deep basement. Our models show a magmatic body to the southwest of the Salton Sea at depth of about 18 km and extend in SW-NE direction for about 90 km, We expect this magmatic body (mix- ture of lower crust and upper mantle material) is responsible for crustal thinning, stretching and rifting, ac- cording to the crustal models this body doesn’t exist in the north region of Salton Trough, thus, no further propagate of the rift is expected in the north.