摘要
We focus the geodynamic status of Eastern Himalayan Syntaxis with reference to Tibetan Plateau,Chinaand Burmese Arc using the crustal deformation constraints with GPS observation. We have used the GPS data, surface geomorphic constraints and compared the existing Pn velocity and Anisotropy [1], determined the crustal velocity of Tibetan Block and North andEast Chinablock as 2 - 8 mm/yr and 6 - 11 mm/yr considering the EHS as stable block. The lack of crustal deformation studies in EHS poses a gap in its geodynamic setup. The present attempt is first time in EHS to estimate crustal deformation by GPS. We presented GPS results from 10 stations along with one permanent station covering the EHS 2 - 3 mm/yr with an azimuth of N460. It reveals that the EHS is moving very slow rates, which accommodates the maximum strain (after Great Earthquake of8.7 M, Arunachal China Border 1950). The neotectonic activities are recorded along the major rivers traversing EHS follow the major thrusts and faults.
We focus the geodynamic status of Eastern Himalayan Syntaxis with reference to Tibetan Plateau,Chinaand Burmese Arc using the crustal deformation constraints with GPS observation. We have used the GPS data, surface geomorphic constraints and compared the existing Pn velocity and Anisotropy [1], determined the crustal velocity of Tibetan Block and North andEast Chinablock as 2 - 8 mm/yr and 6 - 11 mm/yr considering the EHS as stable block. The lack of crustal deformation studies in EHS poses a gap in its geodynamic setup. The present attempt is first time in EHS to estimate crustal deformation by GPS. We presented GPS results from 10 stations along with one permanent station covering the EHS 2 - 3 mm/yr with an azimuth of N460. It reveals that the EHS is moving very slow rates, which accommodates the maximum strain (after Great Earthquake of8.7 M, Arunachal China Border 1950). The neotectonic activities are recorded along the major rivers traversing EHS follow the major thrusts and faults.