期刊文献+

The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas

The Use of Ocean-Colour Data to Estimate Chl-a Trends in European Seas
下载PDF
导出
摘要 Ocean-colour remote-sensing products have been used to estimate Chl-a trends in European seas with the aim to develop a new indicator based on ocean-colour data for the European Environment Agency (EEA). The new indicator, called CSI023(+), derived from satellite ocean-colour products from the MyOcean Marine Core Service (www.myocean.eu) has been defined and calculated. In our analysis, we have used 3 MyOcean satellite products: 2 global satellite products (SeaWiFS and a merged product) and one regional (adjusted to specific regional Mediterranean conditions) ocean-colour product. We have evaluated the differences among the 3 different products in estimating Chl-a trends. CSI023(+) complements the EEA CSI023 indicator for eutrophication based on chlorophyll-a (Chl-a) in-situ observations. Analysis has revealed the potential of ocean colour as a CSI023(+) indicator to detect large-scale, and in some cases, even local-scale, changes and decreasing trends of Chl-a were observed throughout the Black Sea, the Eastern Mediterranean, the southern part of the Western Mediterranean, the English Channel and the north part of the North Sea. Large areas with increasing trends were observed in the Bay of Biscay, in the North-East Atlantic regions of Ireland and the UK, in the northern part of the North Sea, in the Kattegat and in the Baltic. Specific analysis has been performed in the Mediterranean coastal areas using regional products to investigate local scale results. Validation of ocean-colour products has been carried out through comparison with observations of the Eionet EEA database. The validation results highlight that regional products produced with regional algorithms are recommended for the future. Ocean-colour remote-sensing products have been used to estimate Chl-a trends in European seas with the aim to develop a new indicator based on ocean-colour data for the European Environment Agency (EEA). The new indicator, called CSI023(+), derived from satellite ocean-colour products from the MyOcean Marine Core Service (www.myocean.eu) has been defined and calculated. In our analysis, we have used 3 MyOcean satellite products: 2 global satellite products (SeaWiFS and a merged product) and one regional (adjusted to specific regional Mediterranean conditions) ocean-colour product. We have evaluated the differences among the 3 different products in estimating Chl-a trends. CSI023(+) complements the EEA CSI023 indicator for eutrophication based on chlorophyll-a (Chl-a) in-situ observations. Analysis has revealed the potential of ocean colour as a CSI023(+) indicator to detect large-scale, and in some cases, even local-scale, changes and decreasing trends of Chl-a were observed throughout the Black Sea, the Eastern Mediterranean, the southern part of the Western Mediterranean, the English Channel and the north part of the North Sea. Large areas with increasing trends were observed in the Bay of Biscay, in the North-East Atlantic regions of Ireland and the UK, in the northern part of the North Sea, in the Kattegat and in the Baltic. Specific analysis has been performed in the Mediterranean coastal areas using regional products to investigate local scale results. Validation of ocean-colour products has been carried out through comparison with observations of the Eionet EEA database. The validation results highlight that regional products produced with regional algorithms are recommended for the future.
出处 《International Journal of Geosciences》 2013年第6期927-949,共23页 地球科学国际期刊(英文)
关键词 CHLOROPHYLL-A TRENDS EUTROPHICATION Ocean Colour In-Situ Indicator Chlorophyll-a Trends Eutrophication Ocean Colour In-Situ Indicator
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部