期刊文献+

Cement Kiln Dust Chemical Stabilization of Expansive Soil Exposed at El-Kawther Quarter, Sohag Region, Egypt

Cement Kiln Dust Chemical Stabilization of Expansive Soil Exposed at El-Kawther Quarter, Sohag Region, Egypt
下载PDF
导出
摘要 This work dealt with a chemical stabilization of an expansive high plastic soil of Pliocene deposits exposed at El-Kawther quarter using cement kiln dust (CKD) and cement kiln dust with lime (L) to reduce their swelling and improve their geotechnical properties. Several specimens of the studied expansive soil were collected from El-Kawther quarter. Chemical analysis of the used cement kiln dust and the lime was conducted. Microstructural changes were examined using scanning electron microscope (SEM) before and after chemical treatment of the studied soil. Geotechnical properties including plasticity, compaction parameters, unconfined compressive strength (qu), ultrasonic velocities and free swelling of the studied soil were measured before and after the treatment. An optimum content of the cement kiln dust was 16% (CKD). The optimum content of the cement kiln dust with the lime was 14% (CKD) with 3% (L) according to pH-test. The results showed that the addition of cement kiln dust and cement kiln dust with lime led to a decrease in maximum dry density and an increase in optimum water content. Unconfined compressive strength values were increased using cement kiln dust and cement kiln dust with lime at 7 days curing time. Ultrasonic longitudinal (Vp) and shear (Vs) velocities values were also increased by addition of the cement kiln dust and the cement kiln dust with lime at 7 days curing time. Increment of the curing time from 7 to 28 days led to an increase in both unconfined compressive strength and ultrasonic velocities values. Free swelling percent of the studied soil was reduced from 80.0% to 0.0% after the treatment. This work dealt with a chemical stabilization of an expansive high plastic soil of Pliocene deposits exposed at El-Kawther quarter using cement kiln dust (CKD) and cement kiln dust with lime (L) to reduce their swelling and improve their geotechnical properties. Several specimens of the studied expansive soil were collected from El-Kawther quarter. Chemical analysis of the used cement kiln dust and the lime was conducted. Microstructural changes were examined using scanning electron microscope (SEM) before and after chemical treatment of the studied soil. Geotechnical properties including plasticity, compaction parameters, unconfined compressive strength (qu), ultrasonic velocities and free swelling of the studied soil were measured before and after the treatment. An optimum content of the cement kiln dust was 16% (CKD). The optimum content of the cement kiln dust with the lime was 14% (CKD) with 3% (L) according to pH-test. The results showed that the addition of cement kiln dust and cement kiln dust with lime led to a decrease in maximum dry density and an increase in optimum water content. Unconfined compressive strength values were increased using cement kiln dust and cement kiln dust with lime at 7 days curing time. Ultrasonic longitudinal (Vp) and shear (Vs) velocities values were also increased by addition of the cement kiln dust and the cement kiln dust with lime at 7 days curing time. Increment of the curing time from 7 to 28 days led to an increase in both unconfined compressive strength and ultrasonic velocities values. Free swelling percent of the studied soil was reduced from 80.0% to 0.0% after the treatment.
机构地区 Geology Department
出处 《International Journal of Geosciences》 2013年第10期1416-1424,共9页 地球科学国际期刊(英文)
关键词 Ultrasonic VELOCITIES Free SWELLING HEAVE Unconfined Compressive Strength and MICROSTRUCTURAL Changes Ultrasonic Velocities Free Swelling Heave Unconfined Compressive Strength and Microstructural Changes
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部