摘要
This study investigates the groundwater aquifer located in Fayuim oasis. In this study, two of the electromagnetic measurement methods have been used in determining the hydrological situation in the Fayoum oasis. The first is airborne electromagnetic (AEM) which, sometimes is referred to as Helicopter electromagnetic (HEM) and the second is ground Time-domain Electromagnetic method (TEM). The subsurface consists of four geoelectrical layers with a rough slope towards the center. The third and the fourth layers in the succession are suggested to be the two-groundwater aquifers. The third layer saturates with fresh water overlying saline water which exists in the bottom of the second one. It is worth mentioning that the depth of the fresh water surface undulates between the surface level in two lakes in the study area and 57 meters below the ground, whereas the thickness of the fresh water aquifer varies from 13 to 36 meters. The depth of the saline water surface undulates between 59 and 81 meters below the ground. In general, airborne electromagnetic surveying has the advantage of fast resistivity mapping with high lateral resolution. Groundbased geophysical surveys are often more accurate, but they are definitely slower than airborne surveys. It depends on targets of interest, time, budget, and manpower available by the method or the combination of methods that will be chosen. A combination of different methods is useful to obtain a detailed understanding of the subsurface resistivity distribution.
This study investigates the groundwater aquifer located in Fayuim oasis. In this study, two of the electromagnetic measurement methods have been used in determining the hydrological situation in the Fayoum oasis. The first is airborne electromagnetic (AEM) which, sometimes is referred to as Helicopter electromagnetic (HEM) and the second is ground Time-domain Electromagnetic method (TEM). The subsurface consists of four geoelectrical layers with a rough slope towards the center. The third and the fourth layers in the succession are suggested to be the two-groundwater aquifers. The third layer saturates with fresh water overlying saline water which exists in the bottom of the second one. It is worth mentioning that the depth of the fresh water surface undulates between the surface level in two lakes in the study area and 57 meters below the ground, whereas the thickness of the fresh water aquifer varies from 13 to 36 meters. The depth of the saline water surface undulates between 59 and 81 meters below the ground. In general, airborne electromagnetic surveying has the advantage of fast resistivity mapping with high lateral resolution. Groundbased geophysical surveys are often more accurate, but they are definitely slower than airborne surveys. It depends on targets of interest, time, budget, and manpower available by the method or the combination of methods that will be chosen. A combination of different methods is useful to obtain a detailed understanding of the subsurface resistivity distribution.