摘要
This paper used the International Centre for Theoretical Physics (ICTP) Regional Climate Model, Version 3 (RegCM3) and rain gauge data selected from the Ghana Meteorological Agency (GMet) from 1990 to 2008 to investigate the extent and nature of variability in the annual rainfall and pattern of the raining seasons in Ghana. In the study, six meteorological stations selected from three rainfall distribution zones according to the divisions of the GMet were used to study the pattern of rainfall and its departure from the normal trend. The study also assessed the performance of the RegCM3 simulation with reference to the observed gauge data. Results confirmed the unimodal nature of the rainfall annual cycle over the northern belt and bi-modal rainfall nature over the middle and southern belts of Ghana. Negative departures of rainfall implying consistent downward trend were observed at all the stations. Our analysis showed that RegCM3 captured the average rainfall over Ghana but demonstrated an underestimation as compared to the observed gauge data. The model also had difficulty stimulating the departures accurately in direction and in magnitude in all the stations except for Accra where RegCM3 simulated the right direction of the departures.
This paper used the International Centre for Theoretical Physics (ICTP) Regional Climate Model, Version 3 (RegCM3) and rain gauge data selected from the Ghana Meteorological Agency (GMet) from 1990 to 2008 to investigate the extent and nature of variability in the annual rainfall and pattern of the raining seasons in Ghana. In the study, six meteorological stations selected from three rainfall distribution zones according to the divisions of the GMet were used to study the pattern of rainfall and its departure from the normal trend. The study also assessed the performance of the RegCM3 simulation with reference to the observed gauge data. Results confirmed the unimodal nature of the rainfall annual cycle over the northern belt and bi-modal rainfall nature over the middle and southern belts of Ghana. Negative departures of rainfall implying consistent downward trend were observed at all the stations. Our analysis showed that RegCM3 captured the average rainfall over Ghana but demonstrated an underestimation as compared to the observed gauge data. The model also had difficulty stimulating the departures accurately in direction and in magnitude in all the stations except for Accra where RegCM3 simulated the right direction of the departures.