期刊文献+

Structural Relationship between Brittle Deformation and Paleozoic to Mesozoic Basalt Dykes in the Precambrian Basement of the Southern Continental Part of the Cameroon Volcanic Line 被引量:2

Structural Relationship between Brittle Deformation and Paleozoic to Mesozoic Basalt Dykes in the Precambrian Basement of the Southern Continental Part of the Cameroon Volcanic Line
下载PDF
导出
摘要 The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon. The work is a vivid description of the structural relationship between brittle deformation of the Precambrian basement in the southern continental part of the Cameroon Line and intrusive Paleozoic and Mesozoic basalt dykes swarms. A multidisciplinary approach that involves a combination of remote sensing techniques and field studies show that the major trend of brittle structures correspond to well-known regional structures: N70°E (Adamawa Shear Zone), N135°E (upper Benue trend) and N30°E (Cameroon Volcanic Line) corresponding to E-W and N-S directions respectively. Basalt dykes are associated to NE-SW, E-W and NW-SE oriented fractures. An integration of the available information on brittle structures and basalt dykes directions suggest an emplacement of the Mesozoic and Paleozoic basalt dykes structurally controlled by Precambrian structures that were originated through Riedel’s fracture kinematic model with dextral strike-slip Adamawa Shear Zone as the main shear zone during late stage of the Pan-African collision. Spatially, the restriction of the basalt dykes to the corridor of the Adamawa Shear Zone indicate that a rejuvenation of Precambrian faults may very well be the origin of the dykes with possibility that they may have been reworked several times during the Phanerozoic eon.
出处 《International Journal of Geosciences》 2017年第3期318-331,共14页 地球科学国际期刊(英文)
关键词 BASALT DYKES BRITTLE TECTONICS Adamawa Shear Zone Riedel Model Western GONDWANA Basalt Dykes Brittle Tectonics Adamawa Shear Zone Riedel Model Western Gondwana
  • 相关文献

参考文献1

共引文献3

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部