摘要
As a simplified, idealized understanding of a physical system the General Relativity model has been highly successful in its gravitational role. However, it fails to address the problem of sufficiently precise measurement of “Big G”, the Newtonian Gravitation Constant, and has failed to obtain connection of “Big G” to the rest of physics. Because “Big G” arises naturally from Newton’s treatment of gravitation, this paper elaborates the Modern Newtonian Model of Gravitation and through it resolves the problems of “Big G” at which General Relativity has failed. Specifically: The causes of the problems in measuring “Big G” are resolved, “Big G” is connected to the rest of physics, and a sufficiently precise value of “Big G” is obtained by calculation from other fundamental physical constants. The companion paper The Experimental Data Validation of Modern Newtonian Gravitation over General Relativity Gravitation, which is available in this journal, publishes the results of this paper’s “Part V—Testing the Hypothesis and the Derivation”.
As a simplified, idealized understanding of a physical system the General Relativity model has been highly successful in its gravitational role. However, it fails to address the problem of sufficiently precise measurement of “Big G”, the Newtonian Gravitation Constant, and has failed to obtain connection of “Big G” to the rest of physics. Because “Big G” arises naturally from Newton’s treatment of gravitation, this paper elaborates the Modern Newtonian Model of Gravitation and through it resolves the problems of “Big G” at which General Relativity has failed. Specifically: The causes of the problems in measuring “Big G” are resolved, “Big G” is connected to the rest of physics, and a sufficiently precise value of “Big G” is obtained by calculation from other fundamental physical constants. The companion paper The Experimental Data Validation of Modern Newtonian Gravitation over General Relativity Gravitation, which is available in this journal, publishes the results of this paper’s “Part V—Testing the Hypothesis and the Derivation”.