期刊文献+

2.5D Modelling of Aeromagnetic Data and their Mining Implications over the Ngaoundere Area (Adamawa Province, Cameroon)

2.5D Modelling of Aeromagnetic Data and their Mining Implications over the Ngaoundere Area (Adamawa Province, Cameroon)
下载PDF
导出
摘要 This study is based on the analysis and interpretation of aeromagnetic data using version 8.4 of the Geosoft Oasis Montaj Software, to map the subsurface or deep geological structures that affected the geological formations of the Ngaoundere area. The use of the standard aeromagnetic methods made it possible to draw up the maps of the residual magnetic field reduced to the equator (RTE), the horizontal gradient (HG), the analytical signal (AS) and that of the Euler solutions (ED) to find the main magnetic facies corresponding to these structures. The geological formations of the studied area thus appear to be intensely fractured by a NE-SW (N45°E) and ENE-WSW (N70°E) main orientation fault system, the depth of which has been estimated by combining the three-analytical methods HG, AS and ED. Advanced magmatic map analysis revealed dikes associated with vertical faults in the studied area. The development of an interpretative geological map taking into account the basic geology, the deep faults, the identified dikes and the mineralization index made it possible to extract a correlation between geological structures and mineralization of the studied area. The 2.5D modelling of two magnetic profiles plotted on the reduced residual map at the equator was performed to approximate the geometry and depth of the dikes sector, which are potential sources of mineralization here. This study is based on the analysis and interpretation of aeromagnetic data using version 8.4 of the Geosoft Oasis Montaj Software, to map the subsurface or deep geological structures that affected the geological formations of the Ngaoundere area. The use of the standard aeromagnetic methods made it possible to draw up the maps of the residual magnetic field reduced to the equator (RTE), the horizontal gradient (HG), the analytical signal (AS) and that of the Euler solutions (ED) to find the main magnetic facies corresponding to these structures. The geological formations of the studied area thus appear to be intensely fractured by a NE-SW (N45°E) and ENE-WSW (N70°E) main orientation fault system, the depth of which has been estimated by combining the three-analytical methods HG, AS and ED. Advanced magmatic map analysis revealed dikes associated with vertical faults in the studied area. The development of an interpretative geological map taking into account the basic geology, the deep faults, the identified dikes and the mineralization index made it possible to extract a correlation between geological structures and mineralization of the studied area. The 2.5D modelling of two magnetic profiles plotted on the reduced residual map at the equator was performed to approximate the geometry and depth of the dikes sector, which are potential sources of mineralization here.
出处 《International Journal of Geosciences》 2019年第2期173-192,共20页 地球科学国际期刊(英文)
关键词 AEROMAGNETIC Data ANALYTICAL Methods FAULTS MINERALIZATION 2.5D MODELLING Aeromagnetic Data Analytical Methods Faults Mineralization 2.5D Modelling
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部