期刊文献+

Refinement and Quantification of Terrain-Induced Effects on Global Gravity Data

Refinement and Quantification of Terrain-Induced Effects on Global Gravity Data
下载PDF
导出
摘要 The geodetic and geophysical applications of Earth Gravity Field parameters computed from Global Geopotential Models (GGMs) are quite on the increase despite the inherent commission and omission errors of these models. In view of this, this study focuses on refining and quantifying terrain-induced effects on Bouguer gravity anomalies computed directly from a total of seven recent GGMs. In the study, the Residual Terrain Model (RTM) technique was used to estimate the residual terrain effects that were added to the GGM-computed Bouguer gravity anomalies at the sixty test points in Enugu State, Nigeria. The computed residual terrain effects range from -24.6 to 37.5 mgal while the percentage of the omission errors of the GGMs based on their Root-Mean-Square (RMS) differences ranges from 7.8% to 44.7%. It can be concluded that GGM-refined Bouguer gravity anomalies are better in accuracy than the unrefined GGM-computed Bouguer gravity anomalies and hence there is need for accurate height information in the development of GGMs. We, therefore, recommend that refined Bouguer gravity anomalies obtained from HUST-Grace2016s, EIGEN-6C4 and GECO that gave best improvement amongst the seven GGMs under consideration should be used to supplement the available terrestrial Bouguer anomalies for geodetic and geophysical applications within the study area. The geodetic and geophysical applications of Earth Gravity Field parameters computed from Global Geopotential Models (GGMs) are quite on the increase despite the inherent commission and omission errors of these models. In view of this, this study focuses on refining and quantifying terrain-induced effects on Bouguer gravity anomalies computed directly from a total of seven recent GGMs. In the study, the Residual Terrain Model (RTM) technique was used to estimate the residual terrain effects that were added to the GGM-computed Bouguer gravity anomalies at the sixty test points in Enugu State, Nigeria. The computed residual terrain effects range from -24.6 to 37.5 mgal while the percentage of the omission errors of the GGMs based on their Root-Mean-Square (RMS) differences ranges from 7.8% to 44.7%. It can be concluded that GGM-refined Bouguer gravity anomalies are better in accuracy than the unrefined GGM-computed Bouguer gravity anomalies and hence there is need for accurate height information in the development of GGMs. We, therefore, recommend that refined Bouguer gravity anomalies obtained from HUST-Grace2016s, EIGEN-6C4 and GECO that gave best improvement amongst the seven GGMs under consideration should be used to supplement the available terrestrial Bouguer anomalies for geodetic and geophysical applications within the study area.
出处 《International Journal of Geosciences》 2019年第5期513-526,共14页 地球科学国际期刊(英文)
关键词 Bouguer Gravity ANOMALIES GLOBAL GEOPOTENTIAL Models Refined Bouguer ANOMALIES Residual TERRAIN Model (RTM) Effects Bouguer Gravity Anomalies Global Geopotential Models Refined Bouguer Anomalies Residual Terrain Model (RTM) Effects
  • 相关文献

参考文献1

二级参考文献18

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部