期刊文献+

Active Tectonics in Tuscany (Central Italy): Ten Years of Seismicity (2009-2019)

Active Tectonics in Tuscany (Central Italy): Ten Years of Seismicity (2009-2019)
下载PDF
导出
摘要 Strong earthquakes (moment magnitude M<sub>W</sub> ≥ 5.5) are uncommon in Tuscany and surroundings (central Italy). The last strong seismic event occurred a century ago (September 7, 1920 Garfagnana, M<sub>W</sub> = 6.53). The paucity of seismic instrumental recordings hinders the identification of the tectonic regime active in Tuscany. On the other hand, the geological and geomorphological pieces of evidence collected so far, concerning potential active and capable faults, are scarce, fragmentary and ambiguous. In this work I shed light on the active deformation of Tuscany by using two independent approaches: earthquake source mechanisms and GNSS (GPS) geodetic measurements. I have considered 41 small seismic events (M<sub>W</sub> ≤ 5.1) that occurred in the study area during the last decade. The related source mechanisms (retrieved by the Time Domain Moment Tensor method) define a relatively clear picture of the active deformation: extension along the northern Apennine watershed and strike-slip regime within inner Tuscany, up to the Tyrrhenian coast. This pattern broadly agrees with the horizontal strain field reconstructed by the geodetic velocity field. The latter has been constrained by a network of 840 GPS stations located in Italy and neighboring countries, operating in the last 20 years. Strong earthquakes (moment magnitude M<sub>W</sub> ≥ 5.5) are uncommon in Tuscany and surroundings (central Italy). The last strong seismic event occurred a century ago (September 7, 1920 Garfagnana, M<sub>W</sub> = 6.53). The paucity of seismic instrumental recordings hinders the identification of the tectonic regime active in Tuscany. On the other hand, the geological and geomorphological pieces of evidence collected so far, concerning potential active and capable faults, are scarce, fragmentary and ambiguous. In this work I shed light on the active deformation of Tuscany by using two independent approaches: earthquake source mechanisms and GNSS (GPS) geodetic measurements. I have considered 41 small seismic events (M<sub>W</sub> ≤ 5.1) that occurred in the study area during the last decade. The related source mechanisms (retrieved by the Time Domain Moment Tensor method) define a relatively clear picture of the active deformation: extension along the northern Apennine watershed and strike-slip regime within inner Tuscany, up to the Tyrrhenian coast. This pattern broadly agrees with the horizontal strain field reconstructed by the geodetic velocity field. The latter has been constrained by a network of 840 GPS stations located in Italy and neighboring countries, operating in the last 20 years.
作者 Marcello Viti Marcello Viti(Dipartimento di Scienze Fisiche, della Terra e dell’Ambiente, Università degli Studi di Siena, Siena, Italy)
出处 《International Journal of Geosciences》 2020年第10期613-650,共38页 地球科学国际期刊(英文)
关键词 SEISMOTECTONICS Earthquake Source Active Faulting Satellite Geodesy Northern Apennines Italian Region Seismotectonics Earthquake Source Active Faulting Satellite Geodesy Northern Apennines Italian Region
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部