摘要
The paper represents a new discovery of a late Mesoproterozoic lenticular and discontinuous, carbonatitic body exposed at Basantgarh, Sendra and near the Abu-road area of the Ambaji-Sendra belt of the South Delhi Fold Belt. It is medium to coarse-grained and light to dark coloured compact rock. The common associates of the carbonatitic rock are felsic rocks, rich in alkalies. Carbonatite contains more than 50% carbonate minerals, the majority of which are calcite, dolomite, ankerite, augite-aegirine augite and plagioclase. It is classified as calcite carbonatite of the sövite variety due to its coarse-grained character, chemically as calico-carbonatite and magnesio-carbonatite and even as silico-carbonatites for having more than 20% SiO<sub>2</sub>. The ∑REE contents of calico-carbonatite samples are nearly 100 times greater than magnesio-carbonatite. Chondrite normalised REE profiles of calcio-carbonatites are LREE enriched with nearly flat HREEs whereas the magnesio-carbonatite is characterised by flat REE patterns. The mantle-normalized incompatible trace element spidergram of Ambaji-Sendra belt carbonatites shows distinct negative anomalies of Ba, Nb, Ta, P, Sm, Eu, Ti and Y and positive at U and Pb by calcio-carbonatite whereas the magnesio-carbonatite displays negative kinks at K, Zr, Nb, Ta and Ti and positive at Th, Pb and Sr. The variable and/or contrasting enrichment/depletion in various elements in the two types of Ambaji-Sendra belt carbonatite is attributed either to significant differences in the type and modal proportion of different accessory mineral species or selective incorporation of metasomatic fluids during the subduction process. The chemical attributes of Ambaji-Sendra belt carbonatite suggest its emplacement in subduction settings.
The paper represents a new discovery of a late Mesoproterozoic lenticular and discontinuous, carbonatitic body exposed at Basantgarh, Sendra and near the Abu-road area of the Ambaji-Sendra belt of the South Delhi Fold Belt. It is medium to coarse-grained and light to dark coloured compact rock. The common associates of the carbonatitic rock are felsic rocks, rich in alkalies. Carbonatite contains more than 50% carbonate minerals, the majority of which are calcite, dolomite, ankerite, augite-aegirine augite and plagioclase. It is classified as calcite carbonatite of the sövite variety due to its coarse-grained character, chemically as calico-carbonatite and magnesio-carbonatite and even as silico-carbonatites for having more than 20% SiO<sub>2</sub>. The ∑REE contents of calico-carbonatite samples are nearly 100 times greater than magnesio-carbonatite. Chondrite normalised REE profiles of calcio-carbonatites are LREE enriched with nearly flat HREEs whereas the magnesio-carbonatite is characterised by flat REE patterns. The mantle-normalized incompatible trace element spidergram of Ambaji-Sendra belt carbonatites shows distinct negative anomalies of Ba, Nb, Ta, P, Sm, Eu, Ti and Y and positive at U and Pb by calcio-carbonatite whereas the magnesio-carbonatite displays negative kinks at K, Zr, Nb, Ta and Ti and positive at Th, Pb and Sr. The variable and/or contrasting enrichment/depletion in various elements in the two types of Ambaji-Sendra belt carbonatite is attributed either to significant differences in the type and modal proportion of different accessory mineral species or selective incorporation of metasomatic fluids during the subduction process. The chemical attributes of Ambaji-Sendra belt carbonatite suggest its emplacement in subduction settings.
作者
Sadaf Siddiqui
Sadaf Fatima
Tavheed Khan
Mohammad Shamim Khan
Sadaf Siddiqui;Sadaf Fatima;Tavheed Khan;Mohammad Shamim Khan(Department of Geology, Aligarh Muslim University, Aligarh, India;Oil and Natural Gas Corporation, Nazira, India;Geochemistry Division, CSIR-NGRI, Hyderabad, India)