期刊文献+

Analysis of Groundwater for Potability from Tiruchirappalli City Using Backpropagation ANN Model and GIS

Analysis of Groundwater for Potability from Tiruchirappalli City Using Backpropagation ANN Model and GIS
下载PDF
导出
摘要 Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination due to point sources and non point sources. This paper presents Artificial neural Network (ANN) Models that might be used to predict water parameters from a few known parameters. The sample data from 112 hand pumps and hand operated tube well water samples used for drinking purposes by the local population was used. The ANN model features a back propagation algorithm and neuron members were determined for optimization of the model architecture by trial and error method. The model simulations show that the optimum network of 4-50-50-6 has mean error of –0.023% on complete data was utilized. This demonstrated that the developed model has high accuracy for predicting. Thus it has been established that the two hidden layers neural network has more efficiency than asymptotic regression in the present. This model can be used for analysis and prediction of subsurface water quality prediction. Monitoring groundwater quality by cost-effective techniques is important as the aquifers are vulnerable to contamination due to point sources and non point sources. This paper presents Artificial neural Network (ANN) Models that might be used to predict water parameters from a few known parameters. The sample data from 112 hand pumps and hand operated tube well water samples used for drinking purposes by the local population was used. The ANN model features a back propagation algorithm and neuron members were determined for optimization of the model architecture by trial and error method. The model simulations show that the optimum network of 4-50-50-6 has mean error of –0.023% on complete data was utilized. This demonstrated that the developed model has high accuracy for predicting. Thus it has been established that the two hidden layers neural network has more efficiency than asymptotic regression in the present. This model can be used for analysis and prediction of subsurface water quality prediction.
机构地区 不详
出处 《Journal of Environmental Protection》 2010年第2期136-142,共7页 环境保护(英文)
关键词 GROUNDWATER Quality ANN EC TDS SULPHATES pH Tiruchirappalli Groundwater Quality ANN Ec TDS Sulphates pH Tiruchirappalli
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部