期刊文献+

Studies on Feasibility of Reverse Osmosis (Membrane) Technology for Treatment of Tannery Wastewater 被引量:4

Studies on Feasibility of Reverse Osmosis (Membrane) Technology for Treatment of Tannery Wastewater
下载PDF
导出
摘要 Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3. Tanneries reusing wastewater by combination of conventional and advanced Reverse Osmosis (RO) treatment technologies were assessed for technical and economic viabilities. Conventional treatment methods such as neutralization, clari-flocculation and biological processes are followed to clean the effluents before feeding to RO membrane modules. The characteristics of untreated composite effluents such as pH, biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSS), total dissolved solids (TDS), and total chromium were in the range of 4.00-4.60, 680-3600 mg/L, 1698-7546 mg/L, 980-1480 mg/L, 4200-14500 mg/L, and 26.4-190 mg/L, respectively. Inorganic ions like Ca2+, Na+, Cl– and SO42– were found more in the wastewaters. Conventional treatments significantly removed the organic pollutants however failed to remove dissolved inorganic salts. Membrane technology removed the salts as well as remaining organic pollutants and the product water is reused in the process. The studied tanneries (5 numbers) have achieved 93-98%, 92-99% and 91-96% removal of TDS, sodium and chloride, respectively. Seventy to eighty five percentage of wastewater was recovered and recycled in the industrial processes. The rejects are subject to either solar evaporation system or Multiple Effect Evaporation (MEE) technology. The resulting salts are collected in polythene bags and disposed into scientifically managed secured land fill (SLF) site. The cost of wastewater treatment for operation and maintenances of RO including the pre-treatments (conventional methods) is INR 100-110 m-3.
机构地区 不详
出处 《Journal of Environmental Protection》 2011年第1期37-46,共10页 环境保护(英文)
关键词 REVERSE Osmosis (RO) MEMBRANE TECHNOLOGY RECYCLING TANNERY Waste Water Reverse Osmosis (RO) Membrane Technology Recycling Tannery Waste Water
  • 相关文献

同被引文献22

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部