摘要
Background: The impact of urban air pollution and temperature changes over health is a growing concern for epidemiologists all over the world and particularly for developing countries where fewer studies have been performed. Aim: The main goal of this paper is to analyze the short term effects of changes in temperature and atmospheric carbon monoxide on daily mortality in Buenos Aires, Argentina. Methods: We conducted a time series study focused on three age groups, gender, and cardiovascular and respiratory mortality, with lags up to four days and temporal variables as modifiers. Results: Temperature correlates positively with total mortality for summer months, with a RR = 1.0184 (95%, CI 1.0139, 1.0229) on the same day for each 1℃ increase. In winter this relationship reverses, as 1?C temperature increase exhibit a protective effect with a RR = 0.9894 (95%, CI 0.9864, 0.9924) at the 3 day lag. Carbon monoxide correlates always positively with mortality, with a RR = 1.0369 (95%, CI 1.0206, 1.0534) for each 1 ppm increase, on the previous day. Conclusions: Climate and pollution parameters measured in Buenos Aires City exhibit a correlation with health outcomes. The impacts of temperature and carbon monoxide vary with age and gender, being elderly the most susceptible subgroup. One day after an increase in CO of 1 ppm, about 4% extra deaths can be expected. The correlation found between increases in CO and mortality for greater lags may be ascribed to the role of CO as a chemical marker of urban air pollution, indicating the co-presence of other pollutants.
Background: The impact of urban air pollution and temperature changes over health is a growing concern for epidemiologists all over the world and particularly for developing countries where fewer studies have been performed. Aim: The main goal of this paper is to analyze the short term effects of changes in temperature and atmospheric carbon monoxide on daily mortality in Buenos Aires, Argentina. Methods: We conducted a time series study focused on three age groups, gender, and cardiovascular and respiratory mortality, with lags up to four days and temporal variables as modifiers. Results: Temperature correlates positively with total mortality for summer months, with a RR = 1.0184 (95%, CI 1.0139, 1.0229) on the same day for each 1℃ increase. In winter this relationship reverses, as 1?C temperature increase exhibit a protective effect with a RR = 0.9894 (95%, CI 0.9864, 0.9924) at the 3 day lag. Carbon monoxide correlates always positively with mortality, with a RR = 1.0369 (95%, CI 1.0206, 1.0534) for each 1 ppm increase, on the previous day. Conclusions: Climate and pollution parameters measured in Buenos Aires City exhibit a correlation with health outcomes. The impacts of temperature and carbon monoxide vary with age and gender, being elderly the most susceptible subgroup. One day after an increase in CO of 1 ppm, about 4% extra deaths can be expected. The correlation found between increases in CO and mortality for greater lags may be ascribed to the role of CO as a chemical marker of urban air pollution, indicating the co-presence of other pollutants.