摘要
The study investigates the spatial and temporal variation in water quality parameters at ten different locations along River Benue for twelve consecutive months. In order to explore the spatial variation among different stations and seasonal changes, multivariate analysis of variance (MANOVA) was used to group these on the basis of spatial similarities. MANOVA on season and station shows that there is no significant difference between the stations investigated while there is for the seasons. This could be viewed as a resulting from the narrow spatial sampling interval (12 km at 0.7% total length of River Benue). However, discriminate analysis identified all the parameters to discriminate between the three seasons with 99.2% correct assignations. Two discriminate functions were found and the total variance cumulative was 100% between seasons. The first function explained 64.8% of the total variance between the seasons while the second function explained 35.2%. Total solids (TS) were the highest contributor in discriminate functions 1 and 2. Therefore, discriminate function analysis would enable us to predict the likely season a water sample from metropolitan Makurdi was collected given the values of the water quality parameters. It also enables us to conclude that all the parameters were responsible for significant seasonal variations in River Benue water quality.
The study investigates the spatial and temporal variation in water quality parameters at ten different locations along River Benue for twelve consecutive months. In order to explore the spatial variation among different stations and seasonal changes, multivariate analysis of variance (MANOVA) was used to group these on the basis of spatial similarities. MANOVA on season and station shows that there is no significant difference between the stations investigated while there is for the seasons. This could be viewed as a resulting from the narrow spatial sampling interval (12 km at 0.7% total length of River Benue). However, discriminate analysis identified all the parameters to discriminate between the three seasons with 99.2% correct assignations. Two discriminate functions were found and the total variance cumulative was 100% between seasons. The first function explained 64.8% of the total variance between the seasons while the second function explained 35.2%. Total solids (TS) were the highest contributor in discriminate functions 1 and 2. Therefore, discriminate function analysis would enable us to predict the likely season a water sample from metropolitan Makurdi was collected given the values of the water quality parameters. It also enables us to conclude that all the parameters were responsible for significant seasonal variations in River Benue water quality.