摘要
In urban and peri-urban areas of developing countries decentralized wastewater treatment using septic tanks as pretreatment is common. One challenge of decentralized wastewater treatment systems (DEWATS) is handling and utilization of the generated sludge. Sludge drying reed beds (SDRBs) are a robust method for dewatering and stabilization of sludge. Constructed wetlands (CWs) and SDRBs can be integrated to treat both wastewater and sludge. SDRBs require more area than most other sludge treatment options, but have low operational cost and energy requirements. The land area required for SDRB’s can be optimized by the selection of an appropriate loading rate, sludge application frequency and resting phase. This paper gives a review regarding the use of SDRB’s as well as presenting a pilot scale experiment comparing planted and unplanted sludge drying beds in Kathmandu. The planted beds showed a higher dewatering capability and higher reduction of volatile solids (VS). A short-term pilot-scale experiment can give valuable input to the design and operation of full-scale systems and for sub-tropical climate as that of Kathmandu Nepal, an initial sludge loading rate (SLR) of 100 kg total solids (TS)/m2/year is suggested with a gradual increase to up to 250 kg TS/m2/year.
In urban and peri-urban areas of developing countries decentralized wastewater treatment using septic tanks as pretreatment is common. One challenge of decentralized wastewater treatment systems (DEWATS) is handling and utilization of the generated sludge. Sludge drying reed beds (SDRBs) are a robust method for dewatering and stabilization of sludge. Constructed wetlands (CWs) and SDRBs can be integrated to treat both wastewater and sludge. SDRBs require more area than most other sludge treatment options, but have low operational cost and energy requirements. The land area required for SDRB’s can be optimized by the selection of an appropriate loading rate, sludge application frequency and resting phase. This paper gives a review regarding the use of SDRB’s as well as presenting a pilot scale experiment comparing planted and unplanted sludge drying beds in Kathmandu. The planted beds showed a higher dewatering capability and higher reduction of volatile solids (VS). A short-term pilot-scale experiment can give valuable input to the design and operation of full-scale systems and for sub-tropical climate as that of Kathmandu Nepal, an initial sludge loading rate (SLR) of 100 kg total solids (TS)/m2/year is suggested with a gradual increase to up to 250 kg TS/m2/year.