期刊文献+

The Neighborhood Scale Variability of Airborne Particulates

The Neighborhood Scale Variability of Airborne Particulates
下载PDF
导出
摘要 Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities glob-ally. Typically these provide at best a few recording locations per city. However, large spatial var-iability occurs on the neighborhood scale. This study sets out to comprehensively characterize a full size distribution from 0.25 - 32 μm of airborne particulates on a fine spatial scale (meters). The data are gathered on a near daily basis over the month of May, 2014 in a 100 km2 area encompassing parts of Richardson, and Garland, TX. Wind direction was determined to be the dominant factor in classifying the data. The highest mean PM2.5 concentration was 14.1 ± 5.7 μg·m-3 corresponding to periods when the wind was out of the south. The lowest PM2.5 concentrations were observed after several consecutive days of rainfall. The rainfall was found to not only “cleanse” the air, leaving a mean PM2.5 concentration as low as 3.0 ± 0.5 μg·m-3, but also leave the region with a more uniform PM2.5 concentration. Variograms were used to determine an appropriate spatial scale for future sensor placement to provide measurements on a neighborhood scale and found that the spatial scales varied, depending on the synoptic weather pattern, from 0.8 km to 5.2 km, with a typical length scale of 1.6 km. Airborne particulates play a central role in both the earth’s radiation balance and as a trigger for a wide range of health impacts. Air quality monitors are placed in networks across many cities glob-ally. Typically these provide at best a few recording locations per city. However, large spatial var-iability occurs on the neighborhood scale. This study sets out to comprehensively characterize a full size distribution from 0.25 - 32 μm of airborne particulates on a fine spatial scale (meters). The data are gathered on a near daily basis over the month of May, 2014 in a 100 km2 area encompassing parts of Richardson, and Garland, TX. Wind direction was determined to be the dominant factor in classifying the data. The highest mean PM2.5 concentration was 14.1 ± 5.7 μg·m-3 corresponding to periods when the wind was out of the south. The lowest PM2.5 concentrations were observed after several consecutive days of rainfall. The rainfall was found to not only “cleanse” the air, leaving a mean PM2.5 concentration as low as 3.0 ± 0.5 μg·m-3, but also leave the region with a more uniform PM2.5 concentration. Variograms were used to determine an appropriate spatial scale for future sensor placement to provide measurements on a neighborhood scale and found that the spatial scales varied, depending on the synoptic weather pattern, from 0.8 km to 5.2 km, with a typical length scale of 1.6 km.
出处 《Journal of Environmental Protection》 2015年第5期464-476,共13页 环境保护(英文)
关键词 PM2.5 VARIOGRAMS NEIGHBORHOOD SCALE SPATIAL LENGTH PM2.5 Variograms Neighborhood Scale Spatial Length
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部