摘要
The additional anticorrosive coating and hydrophilic layer of glass fiber cloth (GFC) deposited on the carbon steel sheet (CSS) was experimented and the surface wetting characteristic of the hydrophilic modified collection electrode was investigated under single strand feed water condition. The distilled water was selected as the working fluid. The influence of Reynolds number on the surface wetting characteristic parameters and those parameters at different temperatures were specifically studied. The results indicate that the GFC surface with loose glass fiber bundles reveals remarkable surface wetting characterizations. The saturated liquid holdup of this surface is 8 - 10 times more than that of the CSS surface;the surface flowrate value is 6 - 8 percent of that of the CSS surface;the film rate of this surface is 28 - 32 times more than that of the CSS surface;the average film thickness is between a third and a half of the value of the CSS surface. Good agreement is achieved between the WESPs working temperature and the experimental temperature range with remarkable wetting characterizations that provides a theoretical basis for the industrial application. Not satisfactorily, the hydrophilic modification surface is not able to survive high temperature.
The additional anticorrosive coating and hydrophilic layer of glass fiber cloth (GFC) deposited on the carbon steel sheet (CSS) was experimented and the surface wetting characteristic of the hydrophilic modified collection electrode was investigated under single strand feed water condition. The distilled water was selected as the working fluid. The influence of Reynolds number on the surface wetting characteristic parameters and those parameters at different temperatures were specifically studied. The results indicate that the GFC surface with loose glass fiber bundles reveals remarkable surface wetting characterizations. The saturated liquid holdup of this surface is 8 - 10 times more than that of the CSS surface;the surface flowrate value is 6 - 8 percent of that of the CSS surface;the film rate of this surface is 28 - 32 times more than that of the CSS surface;the average film thickness is between a third and a half of the value of the CSS surface. Good agreement is achieved between the WESPs working temperature and the experimental temperature range with remarkable wetting characterizations that provides a theoretical basis for the industrial application. Not satisfactorily, the hydrophilic modification surface is not able to survive high temperature.