期刊文献+

Distribution of Soil-Bound Lead Arising from Rainfall-Runoff Events at Impact Berm of a Military Shooting Range

Distribution of Soil-Bound Lead Arising from Rainfall-Runoff Events at Impact Berm of a Military Shooting Range
下载PDF
导出
摘要 Surface runoff from rainfall event is an important indicator of metal mobility in soil, which may enhance non-point source contamination of soil. This study is designed to assess the mobility of soil-bound lead through simulated rainfall runoff experiment and its spatial distribution within the vicinity of a berm at a major military shooting range. Contamination was more significant at the impact area of berm, indicating threefold increase in Pb (17,500 ± 3811 μg/g) within a space of ten years. However, the non-impact area (459 ± 147 μg/g) was less contaminated. Other metals (Cu, Cd, Cr, Ni and Zn) analyzed were about background levels except for Cu at impact area. The enrichment ratio of Pb in runoff sediments was mostly high for the 0.43 mm sediment fractions independent of rainfall condition. Principal component analysis (PCA) biplot showed strong correlation between spatial distributions of metals around the vicinity of the berm (farmlands behind the berm) with concentrations on the impact berm soil. Surface runoff simulated on impact area soil had high concentrations of Pb (40.4 - 65.6 μg/mL) which could further lead to enrichment of soil-Pb levels within the vicinity of the berm. Decontamination measure is therefore required to minimize extensive contamination of surrounding soils of the impact berm due to rainfall runoff events. Surface runoff from rainfall event is an important indicator of metal mobility in soil, which may enhance non-point source contamination of soil. This study is designed to assess the mobility of soil-bound lead through simulated rainfall runoff experiment and its spatial distribution within the vicinity of a berm at a major military shooting range. Contamination was more significant at the impact area of berm, indicating threefold increase in Pb (17,500 ± 3811 μg/g) within a space of ten years. However, the non-impact area (459 ± 147 μg/g) was less contaminated. Other metals (Cu, Cd, Cr, Ni and Zn) analyzed were about background levels except for Cu at impact area. The enrichment ratio of Pb in runoff sediments was mostly high for the 0.43 mm sediment fractions independent of rainfall condition. Principal component analysis (PCA) biplot showed strong correlation between spatial distributions of metals around the vicinity of the berm (farmlands behind the berm) with concentrations on the impact berm soil. Surface runoff simulated on impact area soil had high concentrations of Pb (40.4 - 65.6 μg/mL) which could further lead to enrichment of soil-Pb levels within the vicinity of the berm. Decontamination measure is therefore required to minimize extensive contamination of surrounding soils of the impact berm due to rainfall runoff events.
作者 Effiong Ukorebi Etim Effiong Ukorebi Etim(Department of Chemistry, University of Ibadan, Ibadan, Nigeria)
出处 《Journal of Environmental Protection》 2016年第5期623-634,共12页 环境保护(英文)
关键词 LEAD Soil Contamination Enrichment Ratio SEDIMENT Shooting Range Lead Soil Contamination Enrichment Ratio Sediment Shooting Range
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部