摘要
Metallo-β-Lactamases (MBLs) and Extended Spectrum β-Lactamses (ESBLs) have emerged world-wide as a significant source of β-lactam resistance. The emergence of MBLs and ESBLs encoded on plasmids among Gram-negative pathogens in hospital dumpsites was investigated. Soils of different government and private hospitals were collected and processed following standard bacteriological techniques. Antimicrobial susceptibility testing was carried out by the disk-diffusion technique using Ceftazidime (30 μg), Cefuroxime (30 μg), Cefotaxime (30 μg), Cefixime (5 μg), Trimethprim-sulfamethoxazole (25 μg), Gentamycin (100 μg) Amoxicillin-Clavunalate (30 μg), Ciprofloxacin (5 μg), Ofloxacin (5 μg), Nitrofurantoin (300 μg) and Imipenem (10 μg). The role of plasmids in resistance was evaluated by subjecting isolates to curing using Sodium Dodecyl Sulfate (SDS). ESBLs production by Double-Disk Synergy Test (DDST) was carried out. Isolates resistant to Imipenem were subjected to a confirmatory test using Modified Hodge’s test and to MBLs production by DDST. Eighty-two Gram-negative isolates comprising of 32 (39.02%) Escherichia coli, 20 (24.39%) Serratia marcescens, 14 (17.07%) Klebsiella pneumonia, 10 (12.28%) Proteus mirabilis and 6 (7.32%) Enterobacter aerogenes were obtained. Susceptibility results revealed a 100% resistance of all isolates to Ceftazidime, Cefuroxime, Cefixime, Amoxycillin-clavulanate and Cefotaxime. A total of 66 (80.48%) isolates harboured plasmids out of which 26 (31.71%) isolates were ESBL producers. MBLs production was observed in 8 (25.00%) E. coli, 2 (2.41%) Klebsiella pneumonia and 2 (2.41%) Proteus mirabilis isolates. All MBLs producing isolates were ESBLs producers. The finding of highly resistant isolates producing ESBLs and MBLs in a hospital environment is quite disturbing and should be addressed urgently.
Metallo-β-Lactamases (MBLs) and Extended Spectrum β-Lactamses (ESBLs) have emerged world-wide as a significant source of β-lactam resistance. The emergence of MBLs and ESBLs encoded on plasmids among Gram-negative pathogens in hospital dumpsites was investigated. Soils of different government and private hospitals were collected and processed following standard bacteriological techniques. Antimicrobial susceptibility testing was carried out by the disk-diffusion technique using Ceftazidime (30 μg), Cefuroxime (30 μg), Cefotaxime (30 μg), Cefixime (5 μg), Trimethprim-sulfamethoxazole (25 μg), Gentamycin (100 μg) Amoxicillin-Clavunalate (30 μg), Ciprofloxacin (5 μg), Ofloxacin (5 μg), Nitrofurantoin (300 μg) and Imipenem (10 μg). The role of plasmids in resistance was evaluated by subjecting isolates to curing using Sodium Dodecyl Sulfate (SDS). ESBLs production by Double-Disk Synergy Test (DDST) was carried out. Isolates resistant to Imipenem were subjected to a confirmatory test using Modified Hodge’s test and to MBLs production by DDST. Eighty-two Gram-negative isolates comprising of 32 (39.02%) Escherichia coli, 20 (24.39%) Serratia marcescens, 14 (17.07%) Klebsiella pneumonia, 10 (12.28%) Proteus mirabilis and 6 (7.32%) Enterobacter aerogenes were obtained. Susceptibility results revealed a 100% resistance of all isolates to Ceftazidime, Cefuroxime, Cefixime, Amoxycillin-clavulanate and Cefotaxime. A total of 66 (80.48%) isolates harboured plasmids out of which 26 (31.71%) isolates were ESBL producers. MBLs production was observed in 8 (25.00%) E. coli, 2 (2.41%) Klebsiella pneumonia and 2 (2.41%) Proteus mirabilis isolates. All MBLs producing isolates were ESBLs producers. The finding of highly resistant isolates producing ESBLs and MBLs in a hospital environment is quite disturbing and should be addressed urgently.
作者
Olivia Sochi Egbule
Olivia Sochi Egbule(Department of Microbiology, Delta State University, Abraka, Nigeria)