期刊文献+

Portrait and Classification of Individual Haze Particulates

Portrait and Classification of Individual Haze Particulates
下载PDF
导出
摘要 Haze (known as “Mai” 霾 in Chinese) threatens the health of billions of people across the globe. To begin solving this problem without severely slowing down the economy, one has to mechanistically and geographically pinpoint the sources of these pollutants, the key of which is to thoroughly characterize and fingerprint the particulates. Here we present a broad survey and classification of thousands of individual airborne particu-lates by using the Scanning Electron Microscope (SEM) to measure their diverse mor-phologies and chemistries, which could eventually be organized into a “haze finger-print database”. For instance, one collection in Xi’an City, China during March-April 2014 yielded 494 airborne particulates that settled on silicon wafers placed outside the window of a 3<sup>rd</sup> floor office. These 494 particulates were manually imaged with high resolution (down to 2 nm), elementally mapped using Energy-dispersive X-ray Spec-troscopy (EDS), and were identified and categorized into presumed source classes such as construction activities (Ca, Al, Si-O), coal burning (sulfates), biologic (pollen, bac-teria), automotive, mining, steel making, and etc. About 20% of the particulates have mysterious origins, as it is still unclear how they were formed, and a fraction of them contained clearly hazardous elements such as lead and chromium. For future work, we propose using unmanned aerial vehicles with a special “rolling film” substrate that can autonomously collect airborne particulates, a customized SEM auto-imaging system, and machine learning software to establish an online open-access database. The end goal would be to monitor and analyze the particulate pollutants that are pumped into our atmosphere every day, and precisely track down their sources so we can better model and police the quality of the air around us. Haze (known as “Mai” 霾 in Chinese) threatens the health of billions of people across the globe. To begin solving this problem without severely slowing down the economy, one has to mechanistically and geographically pinpoint the sources of these pollutants, the key of which is to thoroughly characterize and fingerprint the particulates. Here we present a broad survey and classification of thousands of individual airborne particu-lates by using the Scanning Electron Microscope (SEM) to measure their diverse mor-phologies and chemistries, which could eventually be organized into a “haze finger-print database”. For instance, one collection in Xi’an City, China during March-April 2014 yielded 494 airborne particulates that settled on silicon wafers placed outside the window of a 3<sup>rd</sup> floor office. These 494 particulates were manually imaged with high resolution (down to 2 nm), elementally mapped using Energy-dispersive X-ray Spec-troscopy (EDS), and were identified and categorized into presumed source classes such as construction activities (Ca, Al, Si-O), coal burning (sulfates), biologic (pollen, bac-teria), automotive, mining, steel making, and etc. About 20% of the particulates have mysterious origins, as it is still unclear how they were formed, and a fraction of them contained clearly hazardous elements such as lead and chromium. For future work, we propose using unmanned aerial vehicles with a special “rolling film” substrate that can autonomously collect airborne particulates, a customized SEM auto-imaging system, and machine learning software to establish an online open-access database. The end goal would be to monitor and analyze the particulate pollutants that are pumped into our atmosphere every day, and precisely track down their sources so we can better model and police the quality of the air around us.
作者 Clara Yuan Li Mingshuai Ding Yang Yang Pengcheng Zhang Yao Li Yuecun Wang Longchao Huang Pingjiong Yang Ming Wang Xiao Sha Yameng Xu Chaowei Guo Zhiwei Shan Clara Yuan Li;Mingshuai Ding;Yang Yang;Pengcheng Zhang;Yao Li;Yuecun Wang;Longchao Huang;Pingjiong Yang;Ming Wang;Xiao Sha;Yameng Xu;Chaowei Guo;Zhiwei Shan(Weston High School, Weston, MA, USA;Center for Advancing Materials Performance from the Nanoscale (CAMP-Nano) & Hysitron Applied Research Center in China (HARCC), State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, China)
出处 《Journal of Environmental Protection》 2016年第10期1355-1379,共26页 环境保护(英文)
关键词 PM2.5 PM10 Air Pollution FINGERPRINT Robot PM2.5 PM10 Air Pollution Fingerprint Robot
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部