期刊文献+

Effect of Land Use Changes on Carbon Stock Dynamics in Major Land Use Sectors of Mizoram, Northeast India

Effect of Land Use Changes on Carbon Stock Dynamics in Major Land Use Sectors of Mizoram, Northeast India
下载PDF
导出
摘要 Land use change activities have greatly affected the total ecosystem carbon stock (TECS) and also contribute to global change through emission of greenhouse gases. The present study assessed the change in vegetation biomass carbon stock (VBCS) and soil organic carbon stock (SOCS) following conversion in major land use sectors (agriculture, agroforestry, forest and plantation) in Mizoram, Northeast India. SOCS was the highest in agroforestry (50.85 Mg C ha-1) and the lowest in agriculture (33.99 Mg C ha-1). VBCS was the highest in plantation (131.66 Mg C ha-1) and the lowest in agriculture (7.44 Mg C ha-1). The highest positive TECS change rate was observed when agriculture was converted to plantation (6.61 Mg C ha-1·yr-1), while negative rate of change in carbon stock was observed following the establishment of agriculture from other land use. A positive rate of change was observed in both VBCS and SOCS with TECS rate of 3.58 Mg C ha-1·yr-1 when agriculture got converted to agroforestry. The absolute carbon stock change rates were higher in VBCS than SOCS signifying the importance to maintain tree based vegetation cover. Land use change activities have greatly affected the total ecosystem carbon stock (TECS) and also contribute to global change through emission of greenhouse gases. The present study assessed the change in vegetation biomass carbon stock (VBCS) and soil organic carbon stock (SOCS) following conversion in major land use sectors (agriculture, agroforestry, forest and plantation) in Mizoram, Northeast India. SOCS was the highest in agroforestry (50.85 Mg C ha-1) and the lowest in agriculture (33.99 Mg C ha-1). VBCS was the highest in plantation (131.66 Mg C ha-1) and the lowest in agriculture (7.44 Mg C ha-1). The highest positive TECS change rate was observed when agriculture was converted to plantation (6.61 Mg C ha-1·yr-1), while negative rate of change in carbon stock was observed following the establishment of agriculture from other land use. A positive rate of change was observed in both VBCS and SOCS with TECS rate of 3.58 Mg C ha-1·yr-1 when agriculture got converted to agroforestry. The absolute carbon stock change rates were higher in VBCS than SOCS signifying the importance to maintain tree based vegetation cover.
机构地区 Department of Forestry
出处 《Journal of Environmental Protection》 2018年第12期1262-1285,共24页 环境保护(英文)
关键词 LAND Use Change Soil Organic CARBON STOCK VEGETATION BIOMASS CARBON STOCK Land Use Change Soil Organic Carbon Stock Vegetation Biomass Carbon Stock
  • 相关文献

参考文献1

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部