摘要
This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide.
This study is planned to investigate the problems associated with the wasted sheep fleece in Jordan and to suggest methods to decrease its environmental impact. Results indicate that sheep fleece in Jordan makes an excellent resource for buildings insulation material. A linear regression model is used to predict sheep number for the period (2017-2030). Based on the predicted number of Sheep an estimated annual average production of wool is found for the period (2017-2030) to be (3.586 × 10<sup>3</sup> ton). The average cost per kg of fleece produced is calculated to be 0.39 JD, and the estimated price of fleece per head, if market is available for raw fleece, is 1 JD. Average annual financial losses by farmers are calculated to be (3.743 × 10<sup>6</sup> JD) for the period 2002-2016, and they were estimated to be (9.421 × 10<sup>6</sup> JD) for the years 2017-2030. Physical characteristics of sheep-wool are presented and compared to other competitive insulation materials (polystyrene and rockwool). Sustainability of sheep-wool production to be utilized as an insulation material is found to be an excellent solution to the huge waste of wool with respect to farmers and National income and to the problems associated with environmental impact. Results can be generalized to similar cases worldwide.