期刊文献+

Nutrients Available and Stable Carbon from Archaeological Black Earth

Nutrients Available and Stable Carbon from Archaeological Black Earth
下载PDF
导出
摘要 The present study aims affinity between available concentrations of phosphorus, micronutrients (Cu, Zn and Mn) and stable carbon (SC) in archaeological black earth (ABE) from area “Ilha de Terra”/Caxiuanã—Pará. The relevance of this study refers especially to the determination of carbon concentrations (total, oxidable and semi-labile carbon) directly associated with those of pyrogenic carbon, common in ABE, which should add their contributions to the understanding of soil organic matter recalcitrance. Chemical properties such as CEC and base saturation were determined for ABE and subjacent Latossoil. The available concentrations of nutrients were performed from sequential extraction F1 to F5 phases. Phosphorus was obtained by spectrophotometric method and micronutrients by MP-AES. TOC was determined by the combustion method;stable carbon was obtained from thermoxidation method CTO-375. The following results were obtained from ABE: CEC effective = 21 to 28 (cmolc·L<sup>-1</sup>);base saturation = 58% to 69%;Carbon concentrations (%): TOC = 2.95 to 3.94;SC = 0.25 to 0.88;semi-labile carbon = 1.75 to 3.63;oxidable = 2.11 to 3.65;inorganic carbon 0.01 to 0.38;P<sub>2</sub>O<sub>5</sub> concentrations (mg·kg<sup>-1</sup>) in the ABE phases F3 (Fe-Mn oxides, F4 (organic ) and F5 (residual)) in the following order: 35 to 65;200 to 400;140 to 230. It was concluded that the chemical properties in ABE from Ilha de Terra site fall within the range of fertile and the high concentrations of phosphorus are biogenic origin. Phases F3 and F4 are those considered nutrient stocks from ABE studied area. The present study aims affinity between available concentrations of phosphorus, micronutrients (Cu, Zn and Mn) and stable carbon (SC) in archaeological black earth (ABE) from area “Ilha de Terra”/Caxiuanã—Pará. The relevance of this study refers especially to the determination of carbon concentrations (total, oxidable and semi-labile carbon) directly associated with those of pyrogenic carbon, common in ABE, which should add their contributions to the understanding of soil organic matter recalcitrance. Chemical properties such as CEC and base saturation were determined for ABE and subjacent Latossoil. The available concentrations of nutrients were performed from sequential extraction F1 to F5 phases. Phosphorus was obtained by spectrophotometric method and micronutrients by MP-AES. TOC was determined by the combustion method;stable carbon was obtained from thermoxidation method CTO-375. The following results were obtained from ABE: CEC effective = 21 to 28 (cmolc·L<sup>-1</sup>);base saturation = 58% to 69%;Carbon concentrations (%): TOC = 2.95 to 3.94;SC = 0.25 to 0.88;semi-labile carbon = 1.75 to 3.63;oxidable = 2.11 to 3.65;inorganic carbon 0.01 to 0.38;P<sub>2</sub>O<sub>5</sub> concentrations (mg·kg<sup>-1</sup>) in the ABE phases F3 (Fe-Mn oxides, F4 (organic ) and F5 (residual)) in the following order: 35 to 65;200 to 400;140 to 230. It was concluded that the chemical properties in ABE from Ilha de Terra site fall within the range of fertile and the high concentrations of phosphorus are biogenic origin. Phases F3 and F4 are those considered nutrient stocks from ABE studied area.
作者 Antônio Roberto de Oliveira Meireles Vanda Porpino Lemos Orivan Maria Marques Teixeira Kelly das Graças Fernandes Dantas Dantas Marcelly Christian Galvão Rodrigues Machado Milena Carvalho de Moraes Antônio Roberto de Oliveira Meireles;Vanda Porpino Lemos;Orivan Maria Marques Teixeira;Kelly das Graças Fernandes Dantas Dantas;Marcelly Christian Galvão Rodrigues Machado;Milena Carvalho de Moraes(School Tenente Rego Barros, Bel&eacute;m, Brazil;College of Chemistry, Institute of Exact and Natural Sciences, Federal University of Par&aacute;, Bel&eacute;m, Brazil;Soil and Plant Laboratory, Brazilian Agricultural Research Corporation, Bel&eacute;m, Brazil;Coordination of Earth Sciences and Ecology, Emílio Goeldi Museum of Par&aacute;, Bel&eacute;m, Brazil)
出处 《Journal of Environmental Protection》 2021年第11期873-886,共14页 环境保护(英文)
关键词 Pyrogenic Carbon Oxidable Carbon PHOSPHORUS MICRONUTRIENTS Soil Organic Matter Pyrogenic Carbon Oxidable Carbon Phosphorus Micronutrients Soil Organic Matter
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部