期刊文献+

Remote Sensing and GIS as an Advance Space Technologies for Rare Vegetation Monitoring in Gobustan State National Park, Azerbaijan 被引量:1

Remote Sensing and GIS as an Advance Space Technologies for Rare Vegetation Monitoring in Gobustan State National Park, Azerbaijan
下载PDF
导出
摘要 This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme. This paper describes remote sensing methodologies for monitoring rare vegetation with special emphasis on the Image Statistic Analysis for set of training samples and classification. At first 5 types of Rare Vegetation communities were defined and the Initial classification scheme was designed on that base. After preliminary Statistic Analysis for training samples, a modification algorithm of the classification scheme was defined: one led us to creating a 4 class’s scheme (Final classification scheme). The different methods analysis such as signature statistics, signature separability and scatter plots are used. According to the results, the average separability (Transformed Divergence) is 1951.14, minimum is 1732.44 and maximum is 2000 which shows an acceptable level of accuracy. Contingency Matrix computed on the results of the training on Final classi- fication scheme achieves better results, in terms of overall accuracy, than the training on Initial classification scheme.
机构地区 不详
出处 《Journal of Geographic Information System》 2010年第2期93-99,共7页 地理信息系统(英文)
关键词 REMOTE SENSING GIS Seperability Classification Remote Sensing GIS Seperability Classification
  • 相关文献

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部