期刊文献+

Change Detection of Lake Chad Water Surface Area Using Remote Sensing and Satellite Imagery 被引量:1

Change Detection of Lake Chad Water Surface Area Using Remote Sensing and Satellite Imagery
下载PDF
导出
摘要 The Lake Chad located in the west-central Africa in the Sahel region at the edge of the Sahara experienced severe drought during 1970s and 1980s and overexploitation (unintegrated and unsustainable use), which is a result of variant land uses and water management practices during the last 50 years. This resulted in a decline of the water level in the Lake and surrounding rivers. The present study analyzed satellite images of Lake Chad from Landsat-MSS, Landsat-OLI to investigate the change of the open water surface area during the years of 1973, 1987, 2001, 2013, and 2017. Supervised classifications were performed for the land cover analysis. The open water area in 1973 was covering 16,157.34 km<sup>2</sup> approximately, and that was 64.6% of the total lake area in the 1960s. As an ultimate result of the extreme drought that the study area witnessed through 1970s-1980s, the open water area has decreased to 1831.44 km<sup>2</sup>, <i>i.e.</i> around 11.33%, compared to that in 1973. The dilemma that the study area is suffering from is believed to be a catastrophic complication of the aforementioned drought crisis, which arose as an ultimate result the climate change, global warming, and the unintegrated and unsustainable use of water challenges the study area is still encountering. The Lake Chad located in the west-central Africa in the Sahel region at the edge of the Sahara experienced severe drought during 1970s and 1980s and overexploitation (unintegrated and unsustainable use), which is a result of variant land uses and water management practices during the last 50 years. This resulted in a decline of the water level in the Lake and surrounding rivers. The present study analyzed satellite images of Lake Chad from Landsat-MSS, Landsat-OLI to investigate the change of the open water surface area during the years of 1973, 1987, 2001, 2013, and 2017. Supervised classifications were performed for the land cover analysis. The open water area in 1973 was covering 16,157.34 km<sup>2</sup> approximately, and that was 64.6% of the total lake area in the 1960s. As an ultimate result of the extreme drought that the study area witnessed through 1970s-1980s, the open water area has decreased to 1831.44 km<sup>2</sup>, <i>i.e.</i> around 11.33%, compared to that in 1973. The dilemma that the study area is suffering from is believed to be a catastrophic complication of the aforementioned drought crisis, which arose as an ultimate result the climate change, global warming, and the unintegrated and unsustainable use of water challenges the study area is still encountering.
作者 Abdel-Aziz Adam Mahamat Adeeba Al-Hurban Nehaya Saied Abdel-Aziz Adam Mahamat;Adeeba Al-Hurban;Nehaya Saied(Integrated International for Environmental Services (IIES), Kuwait City, Kuwait;Earth and Environmental Sciences Department, Faculty of Science, Kuwait University, Kuwait City, Kuwait)
出处 《Journal of Geographic Information System》 2021年第5期561-577,共17页 地理信息系统(英文)
关键词 Satellite Imagery LANDSAT Remote Sensing GIS DROUGHT OVEREXPLOITATION Satellite Imagery Landsat Remote Sensing GIS Drought Overexploitation
  • 相关文献

参考文献1

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部