摘要
There has been an increasing global and local interest in developing renewable, clean, and cheap energy towards achieving Goal number 7 of the Sustainable Development Goals (SDG). However, decisions involving suitable and sustainable locations for renewable energy projects remain an important task. This study employed Geographic Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) to spatially analyze and model wind farm site suitability in Nasarawa State. The aim is to integrate the environmental, social, and economic aspects of decision-making for identifying sustainable wind farm sites. The study distinguished between two sets of decision criteria: decision constraints and decision factors. The former defined the exclusion zones while the latter were standardized based on fuzzy logic to depict varying degrees of suitability across the State. The MCDA applied the weighted linear combination method, with relative weights generated through pairwise comparisons of the analytic hierarchy process to analyze three policy scenarios: equal weights, environmental/social priority, and economic priority scenario. A combination of resulting composite maps from the constraints and the factors gave the final suitability maps. The resulting suitability index (SI) for the respective policy scenario describes the degrees of suitability: Ideal locations were denoted by one (1) and the not suitable locations by zero (0), with values in-between depicting varying degrees of wind farm site suitability. Based on the SI, priority locations indicating areas with good prospects, in addition to the most suitable parcels of land, were identified and delineated. The composite decision constraint revealed that wind farm projects would not be viable in more than half (57.58%) of the State. Wind speed was the major constraint and accounted for the exclusion of 46.25%, with a mean fuzzy membership value of 0.2008 indicating low suitability across the State. Also, the average acceptable wind farm location for the three-policy scenario was 33.33% of the entire study area. Lafia, Obi, Keana, Awe, Nasarawa-Eggon, Wamba and Kokona LGAs were the identified priority Local Government Areas (LGAs). However, only Lafia, Obi, and Nasarawa-Eggon were consistent with changes in the policy objectives. All the priority LGAs have one or more of the most suitable parcels within their administrative boundaries except for Wamba. Despite the severe limitations of wind speed, substantial parts of Nasarawa State still provide great development potentials for wind energy. The “most suitable” locations in Lafia, Nasarawa-Eggon, and Obi LGAs should have first consideration for the development of wind energy in the State.
There has been an increasing global and local interest in developing renewable, clean, and cheap energy towards achieving Goal number 7 of the Sustainable Development Goals (SDG). However, decisions involving suitable and sustainable locations for renewable energy projects remain an important task. This study employed Geographic Information System (GIS) and Multi-Criteria Decision Analysis (MCDA) to spatially analyze and model wind farm site suitability in Nasarawa State. The aim is to integrate the environmental, social, and economic aspects of decision-making for identifying sustainable wind farm sites. The study distinguished between two sets of decision criteria: decision constraints and decision factors. The former defined the exclusion zones while the latter were standardized based on fuzzy logic to depict varying degrees of suitability across the State. The MCDA applied the weighted linear combination method, with relative weights generated through pairwise comparisons of the analytic hierarchy process to analyze three policy scenarios: equal weights, environmental/social priority, and economic priority scenario. A combination of resulting composite maps from the constraints and the factors gave the final suitability maps. The resulting suitability index (SI) for the respective policy scenario describes the degrees of suitability: Ideal locations were denoted by one (1) and the not suitable locations by zero (0), with values in-between depicting varying degrees of wind farm site suitability. Based on the SI, priority locations indicating areas with good prospects, in addition to the most suitable parcels of land, were identified and delineated. The composite decision constraint revealed that wind farm projects would not be viable in more than half (57.58%) of the State. Wind speed was the major constraint and accounted for the exclusion of 46.25%, with a mean fuzzy membership value of 0.2008 indicating low suitability across the State. Also, the average acceptable wind farm location for the three-policy scenario was 33.33% of the entire study area. Lafia, Obi, Keana, Awe, Nasarawa-Eggon, Wamba and Kokona LGAs were the identified priority Local Government Areas (LGAs). However, only Lafia, Obi, and Nasarawa-Eggon were consistent with changes in the policy objectives. All the priority LGAs have one or more of the most suitable parcels within their administrative boundaries except for Wamba. Despite the severe limitations of wind speed, substantial parts of Nasarawa State still provide great development potentials for wind energy. The “most suitable” locations in Lafia, Nasarawa-Eggon, and Obi LGAs should have first consideration for the development of wind energy in the State.
作者
Chukwunonso Emmanuel Ozim
Anita Odionyenfe Nweke
Salamatu Abraham Ekpo
Olufemi Stephen Oladeinde
Haruna Kuje Ayuba
Udochukwu Michael Mbanaso
Chukwunonso Emmanuel Ozim;Anita Odionyenfe Nweke;Salamatu Abraham Ekpo;Olufemi Stephen Oladeinde;Haruna Kuje Ayuba;Udochukwu Michael Mbanaso(GIS Unit, Enugu Electricity Distribution Company, Enugu, Enugu State, Nigeria;Federal Ministry of Mines and Steel Development, Abuja, FCT, Nigeria;Department of Environmental Management, Faculty of Environmental Science, Nasarawa State University, Keffi, Nigeria;National Space Research and Development Agency, Obasanjo Space Centre, Abuja, FCT, Nigeria;Department of Urban and Regional Planning, Faculty of Environmental Science, Nasarawa State University, Keffi, Nigeria)