摘要
A GIS audit framework is necessary considering the diverse nature of GIS with regard to components, applications and industry. In practice, checklists are generated during the audit process based on specific objectives. There is no standardized list of items that can be used as a reference. The purpose of this study was to develop a GIS audit framework as a foundation for GIS audits. The framework provides that comprehensive approach to various GIS aspects during the audit process. The design builds on a developed conceptual framework where most significant categories of GIS audit parameters namely data quality, software utilization, GIS competency and procedures (work flows) were identified. The study adopted a reductive model approach to simplify the complexity associated with each category of GIS audit parameter. The resultant audit elements for each category are organized in a matrix that forms an integral part of the framework. The columns comprise audit goal, audit questions and audit subjects as indicators which are qualitatively measured. The rows comprise the parameters (data quality, software utilization, personnel competency and procedure (workflows)). To use the framework, an auditor only needs to create an audit checklist that consists of particular parameters and indicators from the framework depending on audit objective. As part of an on-going research, the next step will involve validating the framework through a mock testing process.
A GIS audit framework is necessary considering the diverse nature of GIS with regard to components, applications and industry. In practice, checklists are generated during the audit process based on specific objectives. There is no standardized list of items that can be used as a reference. The purpose of this study was to develop a GIS audit framework as a foundation for GIS audits. The framework provides that comprehensive approach to various GIS aspects during the audit process. The design builds on a developed conceptual framework where most significant categories of GIS audit parameters namely data quality, software utilization, GIS competency and procedures (work flows) were identified. The study adopted a reductive model approach to simplify the complexity associated with each category of GIS audit parameter. The resultant audit elements for each category are organized in a matrix that forms an integral part of the framework. The columns comprise audit goal, audit questions and audit subjects as indicators which are qualitatively measured. The rows comprise the parameters (data quality, software utilization, personnel competency and procedure (workflows)). To use the framework, an auditor only needs to create an audit checklist that consists of particular parameters and indicators from the framework depending on audit objective. As part of an on-going research, the next step will involve validating the framework through a mock testing process.