期刊文献+

Long-Term Study of Lake Evaporation and Evaluation of Seven Estimation Methods: Results from Dickie Lake, South-Central Ontario, Canada

Long-Term Study of Lake Evaporation and Evaluation of Seven Estimation Methods: Results from Dickie Lake, South-Central Ontario, Canada
下载PDF
导出
摘要 Establishing satisfactory calculation methods of lake evaporation has been crucial for research and manage-ment of water resources and ecosystems. A 30 year dataset from Dickie Lake, south-central Ontario, Canada added to the limited long-term studies on lake evaporation. Evaporation during ice-free season was calcu-lated separately using seven evaporation methods, based on field meteorology, hydrology and lake water temperature data. Actual evaporation determined during a portion of a year was estimated using a lake en-ergy budget model, and the estimation was used as reference evaporation for evaluation of the seven methods. The deviation of method-induced evaporation from the reference evaporation was compared among the seven methods, and a performance rank was proposed based on the root mean squared deviation and coeffi-cient of efficiency. As for the whole ice-free season (roughly May to November), the water balance was the best method, followed by Makkink, DeBruin-Kejiman, Penman, Priestley-Taylor, Hamon, and Jensen-Haise methods. As for shorter duration (a week to a month), the DeBruin-Kejiman was the best method, followed by Penman, Priestley-Taylor, Makkink, Hamon, Jensen-Haise, and water balance method. Annual and sea-sonal changes of energy budget terms and the compensation function of lake heat storage in evaporation flux were also analyzed. Establishing satisfactory calculation methods of lake evaporation has been crucial for research and manage-ment of water resources and ecosystems. A 30 year dataset from Dickie Lake, south-central Ontario, Canada added to the limited long-term studies on lake evaporation. Evaporation during ice-free season was calcu-lated separately using seven evaporation methods, based on field meteorology, hydrology and lake water temperature data. Actual evaporation determined during a portion of a year was estimated using a lake en-ergy budget model, and the estimation was used as reference evaporation for evaluation of the seven methods. The deviation of method-induced evaporation from the reference evaporation was compared among the seven methods, and a performance rank was proposed based on the root mean squared deviation and coeffi-cient of efficiency. As for the whole ice-free season (roughly May to November), the water balance was the best method, followed by Makkink, DeBruin-Kejiman, Penman, Priestley-Taylor, Hamon, and Jensen-Haise methods. As for shorter duration (a week to a month), the DeBruin-Kejiman was the best method, followed by Penman, Priestley-Taylor, Makkink, Hamon, Jensen-Haise, and water balance method. Annual and sea-sonal changes of energy budget terms and the compensation function of lake heat storage in evaporation flux were also analyzed.
作者 Huaxia YAO
机构地区 不详
出处 《Journal of Water Resource and Protection》 2009年第2期59-77,共19页 水资源与保护(英文)
关键词 Long-Term Study LAKE EVAPORATION Water Balance Energy BUDGET LAKE Temperature Stream Discharge Long-Term Study Lake Evaporation Water Balance Energy Budget Lake Temperature Stream Discharge
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部