期刊文献+

Adsorption of Methyl Orange onto Chitosan from Aqueous Solution 被引量:2

Adsorption of Methyl Orange onto Chitosan from Aqueous Solution
下载PDF
导出
摘要 Chitosan was utilized as adsorbent to remove methyl orange (MO) from aqueous solution by adsorption. Batch experiments were conducted to study the effects of pH, initial concentration of adsorbate and temperature on dye adsorption. The kinetic data obtained from different batch experiments were analyzed using both pseudo first-order and pseudo second-order equations. The equilibrium adsorption data were analyzed by using the Freundlich and Langmuir models. The best results were achieved with the pseudo second-order kinetic model and with the Langmuir isotherm equilibrium model. The equilibrium adsorption capacity (qe) increases with increasing the initial concentration of dye and with decreasing pH. The values of qe were found to be slightly increased with increasing solution temperatures. The activation energy (Ea) of sorption kinetics was found to be 10.41 kJ/mol. Thermodynamic parameters such as change in free energy (△G), enthalpy (△H) and entropy (△S) were also discussed. Chitosan was utilized as adsorbent to remove methyl orange (MO) from aqueous solution by adsorption. Batch experiments were conducted to study the effects of pH, initial concentration of adsorbate and temperature on dye adsorption. The kinetic data obtained from different batch experiments were analyzed using both pseudo first-order and pseudo second-order equations. The equilibrium adsorption data were analyzed by using the Freundlich and Langmuir models. The best results were achieved with the pseudo second-order kinetic model and with the Langmuir isotherm equilibrium model. The equilibrium adsorption capacity (qe) increases with increasing the initial concentration of dye and with decreasing pH. The values of qe were found to be slightly increased with increasing solution temperatures. The activation energy (Ea) of sorption kinetics was found to be 10.41 kJ/mol. Thermodynamic parameters such as change in free energy (△G), enthalpy (△H) and entropy (△S) were also discussed.
出处 《Journal of Water Resource and Protection》 2010年第10期898-906,共9页 水资源与保护(英文)
关键词 ADSORPTION Kinetics CHITOSAN ANIONIC DYES WASTEWATER Adsorption Kinetics Chitosan Anionic dyes Wastewater
  • 相关文献

参考文献1

同被引文献3

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部