摘要
Groundwater resources play a crucial role in the domestic and industrial water delivery system in Ghana. Hydrochemical and multivariate statistical techniques were used to investigate groundwater flow and geochemical evolution in the Densu River Basin aquifer system in Ghana. The hydrochemical and multivariate statistical techniques are mutually supportive and extracted information was analysed together with environmental isotope data. The results reveal three spatial groundwater bodies with defined hydrochemical facies, residence times, stable isotopic signals and hydrochemical evolution. The zones are designated as group one in the northern portion, group two in the transmission zone and group three as discharge in the southern portion of the catchment. Some of the stable isotope data of the groundwater do not lie close to the local meteoric water line (LMWL) on the δD-δ18O plot and thus indicate that the meteoric water recharging the groundwater system has undergone some degree of evaporation.
Groundwater resources play a crucial role in the domestic and industrial water delivery system in Ghana. Hydrochemical and multivariate statistical techniques were used to investigate groundwater flow and geochemical evolution in the Densu River Basin aquifer system in Ghana. The hydrochemical and multivariate statistical techniques are mutually supportive and extracted information was analysed together with environmental isotope data. The results reveal three spatial groundwater bodies with defined hydrochemical facies, residence times, stable isotopic signals and hydrochemical evolution. The zones are designated as group one in the northern portion, group two in the transmission zone and group three as discharge in the southern portion of the catchment. Some of the stable isotope data of the groundwater do not lie close to the local meteoric water line (LMWL) on the δD-δ18O plot and thus indicate that the meteoric water recharging the groundwater system has undergone some degree of evaporation.